login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122429
Primes p such that q = 4p^2 + 1, r = 4q^2 + 1 and s = 4r^2 + 1 are all primes.
2
13, 9833, 41647, 151607, 264757, 356123, 361223, 446863, 449093, 457813, 531383, 641057, 655927, 841697, 855947, 899263, 913687, 1052813, 1081757, 1379383, 1506493, 1575757, 1685087, 1821013, 1821377, 1981517, 2054233, 2142037
OFFSET
1,1
COMMENTS
Next terms up to 400000th prime are 2286877, 2524157, 2595247, 2621737, 2931583, 3023437, 3425843, 3428567, 3538517, 3705187, 3777883, 3799717, 3875143, 3913727, 3973553, 4019833, 4167073, 4249523, 4488167, 4651873, 4822193, 4914937, 5054167, 5108293, 5140147, 5465303, 5520007, 5542003. - Zak Seidov, Jan 16 2009
Subsequence of A122424. - Pierre CAMI, Jul 21 2014
REFERENCES
Clifford A. Pickover, A Passion for Mathematics, John Wiley & Sons, Inc., 2005, p.74.
EXAMPLE
13 is there because 13, 677, 1833317 and 13444204889957 are prime.
MATHEMATICA
Reap[Do[p=Prime[n]; q=4p^2+1; r=4q^2+1; s=4r^2+1; If[PrimeQ[{q, r, s}]=={True, True, True}, Sow[p]], {n, 15000}]][[2, 1]]
Select[Prime[Range[200000]], AllTrue[NestList[4#^2+1&, #, 3], PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 22 2015 *)
PROG
(PARI)
f(x)=4*x^2+1;
forprime(p=1, 10^8, if(isprime(f(p))&&isprime(f(f(p)))&&isprime(f(f(f(p)))), print1(p, ", "))) \\ Derek Orr, Jul 31 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Oct 20 2006
EXTENSIONS
More terms from Don Reble, Oct 24 2006
Edited by R. J. Mathar, Nov 02 2009
STATUS
approved