login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001912 Numbers n such that 4*n^2 + 1 is prime.
(Formerly M0636 N0232)
41
1, 2, 3, 5, 7, 8, 10, 12, 13, 18, 20, 27, 28, 33, 37, 42, 45, 47, 55, 58, 60, 62, 63, 65, 67, 73, 75, 78, 80, 85, 88, 90, 92, 102, 103, 105, 112, 115, 118, 120, 125, 128, 130, 132, 135, 140, 142, 150, 153, 157, 163, 170, 175, 192, 193, 198, 200 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Complement of A094550. - Hermann Stamm-Wilbrandt, Sep 16 2014

Positive integers whose square is the sum of two triangular numbers in exactly one way (A000217(n) + A000217(n+1) = n*(n+1)/2 + (n+1)*(n+2)/2 = (n+1)^2). In other words, positive integers n such that A052343(n^2) = 1. - Altug Alkan, Jul 06 2016

REFERENCES

E. Kogbetliantz and A. Krikorian, Handbook of First Complex Prime Numbers, Gordon and Breach, NY, 1971, p. 1.

M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 11.

C. S. Ogilvy, Tomorrow's Math. 2nd ed., Oxford Univ. Press, 1972, p. 116.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929. [Annotated scans of a few pages from Volumes 1 and 2]

E. Kogbetliantz and A. Krikorian Handbook of First Complex Prime Numbers, Gordon and Breach, NY, 1971 [Annotated scans of a few pages]

Marek Wolf, Search for primes of the form m^2+1, arXiv:0803.1456 [math.NT], 2008-2010.

FORMULA

a(n) = A005574(n+1)/2.

MAPLE

A001912 := proc(n)

    option remember;

    if n = 1 then

        1;

    else

        for a from procname(n-1)+1 do

            if isprime(4*a^2+1) then

                return a;

            end if;

        end do:

    end if;

end proc: # R. J. Mathar, Aug 09 2012

MATHEMATICA

Select[Range[200], PrimeQ[4#^2 + 1] &] (* Alonso del Arte, Dec 20 2013 *)

PROG

(MAGMA)[n: n in [1..100] | IsPrime(4*n^2+1)] // Vincenzo Librandi, Nov 21 2010

(PARI) is(n)=isprime(4*n^2 + 1) \\ Charles R Greathouse IV, Apr 28 2015

CROSSREFS

Cf. A002496, A005574, A062325, A090693, A094550, A214517 (first differences).

Sequence in context: A186317 A285077 A143826 * A186221 A083027 A060107

Adjacent sequences:  A001909 A001910 A001911 * A001913 A001914 A001915

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 22:55 EST 2019. Contains 329974 sequences. (Running on oeis4.)