

A001914


Cyclic numbers: 10 is a quadratic residue modulo p and class of mantissa is 2.
(Formerly M2940 N1183)


4



2, 13, 31, 43, 67, 71, 83, 89, 107, 151, 157, 163, 191, 197, 199, 227, 283, 293, 307, 311, 347, 359, 373, 401, 409, 431, 439, 443, 467, 479, 523, 557, 563, 569, 587, 599, 601, 631, 653, 677, 683, 719, 761, 787, 827, 839, 877, 881, 883, 911, 919, 929, 947, 991
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Also, apart from first term 2, primes p for which the repunit (A002275) R((p1)/2)=(10^((p1)/2)1)/9 is the smallest repunit divisible by p. Primes for which A000040(n) = 2*A071126(n) + 1.  Hugo Pfoertner, Mar 18 2003, Sep 18 2018


REFERENCES

Albert H. Beiler, Recreations in the Theory of Numbers, 2nd ed. New York: Dover, 1966. Pages 65, 309.
M. Kraitchik, Recherches sur la Théorie des Nombres. GauthiersVillars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 61.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Hugo Pfoertner, Table of n, a(n) for n = 1..1180


EXAMPLE

The repunit R(6)=111111 is the smallest repunit divisible by the prime a(2)=13=2*6+1.


PROG

(PARI) R(n)=(10^n1)/9;
print1(2, ", "); forprime(p=3, 1000, m=0; for(q=3, (p1)/21, if(R(q)%p==0, m=1; break)); if(m==0&&R((p1)/2)%p==0, print1(p, ", "))) \\ Hugo Pfoertner, Sep 18 2018


CROSSREFS

Cf. A003277 for another sequence of cyclic numbers.
Cf. A000040, A002275, A071126.
Sequence in context: A300111 A030452 A132602 * A254447 A031392 A156980
Adjacent sequences: A001911 A001912 A001913 * A001915 A001916 A001917


KEYWORD

nonn


AUTHOR

N. J. A. Sloane


EXTENSIONS

More terms from Enoch Haga


STATUS

approved



