The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A030452 Markov numbers satisfying region 5 (x=5) of the equation x^2 + y^2 + z^2 = 3xyz. 1
 1, 2, 13, 29, 194, 433, 2897, 6466, 43261, 96557, 646018, 1441889, 9647009, 21531778, 144059117, 321534781, 2151239746, 4801489937, 32124537073, 71700814274, 479716816349, 1070710724173, 7163627708162, 15988960048321 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Positive values of x (or y) satisfying x^2 - 15xy + y^2 + 25 = 0. - Colin Barker, Feb 11 2014 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 Eric Weisstein's World of Mathematics, Markov Number. Index entries for linear recurrences with constant coefficients, signature (0,15,0,-1). FORMULA a(n) = 15*a(n-2)-a(n-4). G.f.: -x*(x-1)*(x^2+3*x+1) / (x^4-15*x^2+1). - Colin Barker, Feb 11 2014 MATHEMATICA CoefficientList[Series[(1 - x) (x^2 + 3 x + 1)/(x^4 - 15 x^2 + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *) PROG (PARI) Vec(-x*(x-1)*(x^2+3*x+1)/(x^4-15*x^2+1) + O(x^100)) \\ Colin Barker, Feb 11 2014 (Magma) I:=[1, 2, 13, 29]; [n le 4 select I[n] else 15*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Feb 12 2014 CROSSREFS Sequence in context: A299510 A299310 A300111 * A132602 A001914 A254447 Adjacent sequences:  A030449 A030450 A030451 * A030453 A030454 A030455 KEYWORD nonn,easy AUTHOR Mark Milhet (mm992395(AT)shellus.com) EXTENSIONS More terms from James A. Sellers, May 01 2000 Offset changed to 1 by Colin Barker, Feb 11 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 04:03 EST 2022. Contains 358353 sequences. (Running on oeis4.)