login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030452
Markov numbers satisfying region 5 (x=5) of the equation x^2 + y^2 + z^2 = 3xyz.
1
1, 2, 13, 29, 194, 433, 2897, 6466, 43261, 96557, 646018, 1441889, 9647009, 21531778, 144059117, 321534781, 2151239746, 4801489937, 32124537073, 71700814274, 479716816349, 1070710724173, 7163627708162, 15988960048321
OFFSET
1,2
COMMENTS
Positive values of x (or y) satisfying x^2 - 15xy + y^2 + 25 = 0. - Colin Barker, Feb 11 2014
LINKS
Eric Weisstein's World of Mathematics, Markov Number.
FORMULA
a(n) = 15*a(n-2)-a(n-4).
G.f.: -x*(x-1)*(x^2+3*x+1) / (x^4-15*x^2+1). - Colin Barker, Feb 11 2014
MATHEMATICA
CoefficientList[Series[(1 - x) (x^2 + 3 x + 1)/(x^4 - 15 x^2 + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
PROG
(PARI) Vec(-x*(x-1)*(x^2+3*x+1)/(x^4-15*x^2+1) + O(x^100)) \\ Colin Barker, Feb 11 2014
(Magma) I:=[1, 2, 13, 29]; [n le 4 select I[n] else 15*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Feb 12 2014
CROSSREFS
Sequence in context: A299510 A299310 A300111 * A132602 A359125 A001914
KEYWORD
nonn,easy
AUTHOR
Mark Milhet (mm992395(AT)shellus.com)
EXTENSIONS
More terms from James A. Sellers, May 01 2000
Offset changed to 1 by Colin Barker, Feb 11 2014
STATUS
approved