login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300111
Number of nX4 0..1 arrays with every element equal to 1, 2, 4, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
1
2, 13, 29, 112, 515, 2713, 12669, 59569, 295903, 1439748, 6946321, 33748534, 164163421, 796809315, 3867558936, 18785049041, 91228838297, 442968357392, 2151023744989, 10445663389464, 50723981600714, 246313304788613
OFFSET
1,1
COMMENTS
Column 4 of A300115.
LINKS
FORMULA
Empirical: a(n) = 8*a(n-1) -22*a(n-2) +50*a(n-3) -100*a(n-4) +87*a(n-5) -28*a(n-6) +185*a(n-7) -2087*a(n-8) +4007*a(n-9) -1726*a(n-10) +3795*a(n-11) -29105*a(n-12) +114870*a(n-13) -197976*a(n-14) +164388*a(n-15) -38743*a(n-16) +241083*a(n-17) -1477448*a(n-18) +2958415*a(n-19) -3733030*a(n-20) +3976582*a(n-21) -6534750*a(n-22) +11613507*a(n-23) -13103127*a(n-24) +13163030*a(n-25) -16341495*a(n-26) +27407619*a(n-27) -26545990*a(n-28) +6097709*a(n-29) +5793810*a(n-30) -4770508*a(n-31) -1436482*a(n-32) -14106740*a(n-33) +13977469*a(n-34) -5342094*a(n-35) +29552651*a(n-36) -48375324*a(n-37) +47858441*a(n-38) -22810038*a(n-39) +7904052*a(n-40) +2103556*a(n-41) +7347362*a(n-42) -13339150*a(n-43) -10775336*a(n-44) +145017*a(n-45) +10531212*a(n-46) -1184471*a(n-47) -806731*a(n-48) +431595*a(n-49) -409615*a(n-50) +100962*a(n-51) -7225*a(n-52) -27756*a(n-53) +4942*a(n-54) +1168*a(n-55) +38*a(n-56) for n>60
EXAMPLE
Some solutions for n=5
..0..0..0..0. .0..1..1..0. .0..1..0..0. .0..1..0..0. .0..0..1..1
..1..0..0..1. .0..0..1..0. .0..1..1..0. .0..1..1..1. .1..1..0..0
..1..0..0..1. .0..0..1..1. .1..0..1..1. .0..1..1..0. .0..1..1..1
..1..0..1..0. .1..0..1..1. .0..1..1..1. .0..1..1..0. .0..1..1..0
..0..0..1..0. .0..1..0..1. .1..0..0..1. .1..0..1..0. .0..1..0..0
CROSSREFS
Cf. A300115.
Sequence in context: A298392 A299510 A299310 * A030452 A132602 A359125
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 25 2018
STATUS
approved