login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A052343
Number of ways to write n as the unordered sum of two triangular numbers (zero allowed).
24
1, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 1, 1, 1, 0, 1, 2, 0, 1, 0, 1, 2, 1, 0, 1, 1, 0, 1, 1, 1, 1, 2, 0, 0, 1, 0, 2, 1, 1, 1, 0, 0, 2, 1, 0, 1, 2, 0, 1, 1, 0, 2, 0, 0, 0, 2, 2, 1, 1, 0, 1, 1, 0, 0, 1, 1, 2, 1, 0, 1, 1, 0, 2, 1, 0, 0, 2, 0, 1, 1, 0, 3, 0, 1, 1, 0, 0, 1, 1, 0, 1, 2, 1, 1, 2, 0, 0, 1, 0, 1, 1, 1
OFFSET
0,7
COMMENTS
Number of ways of writing n as a sum of a square and twice a triangular number (zeros allowed). - Michael Somos, Aug 18 2003
a(A020757(n))=0; a(A020756(n))>0; a(A119345(n))=1; a(A118139(n))>1. - Reinhard Zumkeller, May 15 2006
Also, number of ways to write 4n+1 as the unordered sum of two squares of nonnegative integers. - Vladimir Shevelev, Jan 21 2009
The average value of a(n) for n <= x is Pi/4 + O(1/sqrt(x)). - Vladimir Shevelev, Feb 06 2009
LINKS
V. Shevelev, Binary additive problems: recursions for numbers of representations, arXiv:0901.3102 [math.NT], 2009-2013.
V. Shevelev, Binary additive problems: theorems of Landau and Hardy-Littlewood type, arXiv:0902.1046 [math.NT], 2009-2012.
FORMULA
a(n) = ceiling(A008441(n)/2). - Reinhard Zumkeller, Nov 03 2009
G.f.: (Sum_{k>=0} x^(k^2 + k)) * (Sum_{k>=0} x^(k^2)). - Michael Somos, Aug 18 2003
Recurrence: a(n) = Sum_{k=1..r(n)} r(2n-k^2+k) - C(r(n),2) - a(n-1) - a(n-2) - ... - a(0), n>=1,a (0)=1, where r(n)=A000194(n+1) is the nearest integer to square root of n+1. For example, since r(6)=3, a(6) = r(12) + r(10) + r(6) - C(3,2) - a(5) - ... - a(0) = 4 + 3 + 3 - 3 - 0 - 1 - 1 - 1 - 1 - 1 = 2. - Vladimir Shevelev, Feb 06 2009
a(n) = A025426(8n+2). - Max Alekseyev, Mar 09 2009
a(n) = (A002654(4n+1) + A010052(4n+1)) / 2. - Ant King, Dec 01 2010
a(2*n + 1) = A053692(n). a(4*n + 1) = A259287(n). a(4*n + 3) = A259285(n). a(6*n + 1) = A260415(n). a(6*n + 4) = A260516(n) - Michael Somos, Jul 28 2015
a(3*n) = A093518(n). a(3*n + 1) = A121444(n). a(9*n + 2) = a(n). a(9*n + 5) = a(9*n + 8) = 0. - Michael Somos, Jul 28 2015
Convolution of A005369 and A010052. - Michael Somos, Jul 28 2015
EXAMPLE
G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^6 + x^7 + x^9 + x^10 + x^11 + ...
MAPLE
A052343 := proc(n)
local a, t1idx, t2idx, t1, t2;
a := 0 ;
for t1idx from 0 do
t1 := A000217(t1idx) ;
if t1 > n then
break;
end if;
for t2idx from t1idx do
t2 := A000217(t2idx) ;
if t1+t2 > n then
break;
elif t1+t2 = n then
a := a+1 ;
end if;
end do:
end do:
a ;
end proc: # R. J. Mathar, Apr 28 2020
MATHEMATICA
Length[PowersRepresentations[4 # + 1, 2, 2]] & /@ Range[0, 101] (* Ant King, Dec 01 2010 *)
d1[k_]:=Length[Select[Divisors[k], Mod[#, 4]==1&]]; d3[k_]:=Length[Select[Divisors[k], Mod[#, 4]==3&]]; f[k_]:=d1[k]-d3[k]; g[k_]:=If[IntegerQ[Sqrt[4k+1]], 1/2 (f[4k+1]+1), 1/2 f[4k+1]]; g[#]&/@Range[0, 101] (* Ant King, Dec 01 2010 *)
a[ n_] := Length @ Select[ Table[ Sqrt[n - i - i^2], {i, 0, Quotient[ Sqrt[4 n + 1] - 1, 2]}], IntegerQ]]; (* Michael Somos, Jul 28 2015 *)
a[ n_] := Length @ FindInstance[ {j >= 0, k >= 0, j^2 + k^2 + k == n}, {k, j}, Integers, 10^9]; (* Michael Somos, Jul 28 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, sum(i=0, (sqrtint(4*n + 1) - 1)\2, issquare(n - i - i^2)))}; /* Michael Somos, Aug 18 2003 */
(Haskell)
a052343 = (flip div 2) . (+ 1) . a008441
-- Reinhard Zumkeller, Jul 25 2014
KEYWORD
nonn
AUTHOR
Christian G. Bower, Jan 23 2000
STATUS
approved