OFFSET
0,7
COMMENTS
Number of ways of writing n as a sum of a square and twice a triangular number (zeros allowed). - Michael Somos, Aug 18 2003
a(A020757(n))=0; a(A020756(n))>0; a(A119345(n))=1; a(A118139(n))>1. - Reinhard Zumkeller, May 15 2006
Also, number of ways to write 4n+1 as the unordered sum of two squares of nonnegative integers. - Vladimir Shevelev, Jan 21 2009
The average value of a(n) for n <= x is Pi/4 + O(1/sqrt(x)). - Vladimir Shevelev, Feb 06 2009
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
V. Shevelev, Binary additive problems: recursions for numbers of representations, arXiv:0901.3102 [math.NT], 2009-2013.
V. Shevelev, Binary additive problems: theorems of Landau and Hardy-Littlewood type, arXiv:0902.1046 [math.NT], 2009-2012.
FORMULA
a(n) = ceiling(A008441(n)/2). - Reinhard Zumkeller, Nov 03 2009
G.f.: (Sum_{k>=0} x^(k^2 + k)) * (Sum_{k>=0} x^(k^2)). - Michael Somos, Aug 18 2003
Recurrence: a(n) = Sum_{k=1..r(n)} r(2n-k^2+k) - C(r(n),2) - a(n-1) - a(n-2) - ... - a(0), n>=1,a (0)=1, where r(n)=A000194(n+1) is the nearest integer to square root of n+1. For example, since r(6)=3, a(6) = r(12) + r(10) + r(6) - C(3,2) - a(5) - ... - a(0) = 4 + 3 + 3 - 3 - 0 - 1 - 1 - 1 - 1 - 1 = 2. - Vladimir Shevelev, Feb 06 2009
a(n) = A025426(8n+2). - Max Alekseyev, Mar 09 2009
a(2*n + 1) = A053692(n). a(4*n + 1) = A259287(n). a(4*n + 3) = A259285(n). a(6*n + 1) = A260415(n). a(6*n + 4) = A260516(n) - Michael Somos, Jul 28 2015
a(3*n) = A093518(n). a(3*n + 1) = A121444(n). a(9*n + 2) = a(n). a(9*n + 5) = a(9*n + 8) = 0. - Michael Somos, Jul 28 2015
EXAMPLE
G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^6 + x^7 + x^9 + x^10 + x^11 + ...
MAPLE
A052343 := proc(n)
local a, t1idx, t2idx, t1, t2;
a := 0 ;
for t1idx from 0 do
t1 := A000217(t1idx) ;
if t1 > n then
break;
end if;
for t2idx from t1idx do
t2 := A000217(t2idx) ;
if t1+t2 > n then
break;
elif t1+t2 = n then
a := a+1 ;
end if;
end do:
end do:
a ;
end proc: # R. J. Mathar, Apr 28 2020
MATHEMATICA
Length[PowersRepresentations[4 # + 1, 2, 2]] & /@ Range[0, 101] (* Ant King, Dec 01 2010 *)
d1[k_]:=Length[Select[Divisors[k], Mod[#, 4]==1&]]; d3[k_]:=Length[Select[Divisors[k], Mod[#, 4]==3&]]; f[k_]:=d1[k]-d3[k]; g[k_]:=If[IntegerQ[Sqrt[4k+1]], 1/2 (f[4k+1]+1), 1/2 f[4k+1]]; g[#]&/@Range[0, 101] (* Ant King, Dec 01 2010 *)
a[ n_] := Length @ Select[ Table[ Sqrt[n - i - i^2], {i, 0, Quotient[ Sqrt[4 n + 1] - 1, 2]}], IntegerQ]]; (* Michael Somos, Jul 28 2015 *)
a[ n_] := Length @ FindInstance[ {j >= 0, k >= 0, j^2 + k^2 + k == n}, {k, j}, Integers, 10^9]; (* Michael Somos, Jul 28 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, sum(i=0, (sqrtint(4*n + 1) - 1)\2, issquare(n - i - i^2)))}; /* Michael Somos, Aug 18 2003 */
(Haskell)
a052343 = (flip div 2) . (+ 1) . a008441
-- Reinhard Zumkeller, Jul 25 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Jan 23 2000
STATUS
approved