login
A358194
Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with partial sums summing to k, where k ranges from n to n(n+1)/2.
39
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1
OFFSET
0,77
COMMENTS
The partial sums of a sequence (a, b, c, ...) are (a, a+b, a+b+c, ...).
EXAMPLE
Triangle begins:
1
1
1 1
1 0 1 1
1 0 1 1 0 1 1
1 0 0 1 1 0 1 1 0 1 1
1 0 0 1 1 1 1 0 1 1 0 1 1 0 1 1
1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1
1 0 0 0 1 1 1 1 0 1 1 1 2 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1
For example, the T(15,59) = 5 partitions are: (8,2,2,2,1), (7,3,3,1,1), (6,5,2,1,1), (4,3,2,2,2,2), (3,3,3,3,2,1).
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Total[Accumulate[#]]==k&]], {n, 0, 8}, {k, n, n*(n+1)/2}]
CROSSREFS
Row sums are A000041.
The version for compositions is A053632.
Row lengths are A152947.
The version for reversed partitions is A264034.
A048793 = partial sums of reversed standard compositions, sum A029931.
A358134 = partial sums of standard compositions, sum A359042.
A358136 = partial sums of prime indices, sum A318283.
A359361 = partial sums of reversed prime indices, sum A304818.
Sequence in context: A212210 A127499 A198068 * A121361 A191907 A052343
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Dec 31 2022
STATUS
approved