OFFSET
1,2
COMMENTS
Write lg = log_10, let {x} denote the fractional part of x. Note that {k*lg(5)} = 1 - {k*lg(2)} and that {k*lg(8)} = {k*lg(2)} + 0, 1, or 2, so we have {k > 0 : 5^k and 8^k both start with a} = {k: {k*lg(2)} is in I_a}, where I_a = (1-lg(a+1), 1-lg(a)) intersect (((lg(a))/3, (lg(a+1))/3) U ((lg(a)+1)/3, (lg(a+1)+1)/3) U ((lg(a)+2)/3, (lg(a+1)+2)/3)). Note that I_1 = (1-lg(2), (lg(2)+2)/3), I_3 = ((lg(3)+1)/3, 1-lg(3)), I_5 = (lg(5)/3, lg(6)/3) and that I_a is empty otherwise. As a result, k > 0 is a term if and only if {k*lg(2)} is in (lg(5)/3, lg(6)/3) U ((lg(3)+1)/3, 1-lg(3)) U (1-lg(2), (lg(2)+2)/3). We see that when 5^k and 8^k both start with 1, 3, or 5, 2^k starts with 5, 3, or 1 respectively. - Jianing Song, Dec 26 2022
LINKS
Nicolay Avilov, Problem 2405. 4 and 5 (in Russian).
EXAMPLE
5 is a term because 5^5 = 3125 and 8^5 = 32768;
9 is a term because 5^9 = 1953125 and 8^9 = 134217728.
MATHEMATICA
Select[Range[0, 500], Equal @@ IntegerDigits[{5, 8}^#][[;; , 1]] &] (* Amiram Eldar, Nov 02 2022 *)
PROG
(PARI) isok(k) = digits(5^k)[1] == digits(8^k)[1]; \\ Michel Marcus, Nov 02 2022
(Python)
def ok(n): return str(5**n)[0] == str(8**n)[0]
print([k for k in range(501) if ok(k)]) # Michael S. Branicky, Nov 03 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Nicolay Avilov, Nov 02 2022
STATUS
approved