login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358198
a(n) is the first member p of A007530 such that, with q = p+2, r = p+6 and s = p+8, (2*p+q)/5 is a prime and (r+2*s)/5^n is a prime.
0
11, 101, 243701, 6758951, 3257480201, 5493848951, 58634348951, 218007942701, 21840280598951, 213065296223951, 186522444661451, 383378987630201, 7794174397786451, 110420241292317701, 67327687581380201, 91455128987630201, 3987035878499348951, 80659241994222005201, 4289429982503255201
OFFSET
1,1
EXAMPLE
a(3) = 243701 because p = 247301, q = p+2 = 247303, r = p+6 = 243707, s = p+8 = 243709, (2*p+q)/5 = 146221 and (r+2*s)/5^3 = 5849 are primes, and p is the least prime that works.
MAPLE
f:= proc(n) local t, p, m;
m:= 5^n;
t:= 3;
do
t:= nextprime(t);
if t*m mod 3 <> 1 then next fi;
p:= (t*m-22)/3;
if isprime(p) and isprime(p+2) and isprime(p+6) and isprime(p+8) and isprime((3*p+2)/5) then return p fi;
od;
end proc;
map(f, [$1..20]);
MATHEMATICA
a[n_] := a[n] = Module[{t = 3, p, m = 5^n}, While[True, t = NextPrime[t]; If[Mod[t*m, 3] != 1, Continue[]]; p = (t*m - 22)/3; If[AllTrue[{p, p+2, p+6, p+8, (3p+2)/5}, PrimeQ], Return[p]]]];
Table[Print[n, " ", a[n]]; a[n], {n, 1, 19}] (* Jean-François Alcover, Jan 31 2023, after Maple program *)
CROSSREFS
Sequence in context: A103992 A185949 A001387 * A247863 A180280 A100580
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Nov 02 2022
STATUS
approved