login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088935
Numbers n such that leading digits of 2^n and 5^n are equal.
4
0, 5, 15, 78, 88, 98, 108, 118, 181, 191, 201, 211, 274, 284, 294, 304, 367, 377, 387, 397, 407, 470, 480, 490, 500, 563, 573, 583, 593, 603, 666, 676, 686, 696, 759, 769, 779, 789, 852, 862, 872, 882, 892, 955, 965, 975, 985, 1048, 1058, 1068, 1078, 1088
OFFSET
1,2
COMMENTS
Write lg = log_10, let {x} denote the fractional part of x. Note that {k*lg(5)} = 1 - {k*lg(2)}, so we have {k > 0 : 2^k, 5^k, 8^k all start with a} = {k: {k*lg(2)} is in I_a}, where I_a = (lg(a), lg(a+1)) intersect (1-lg(a+1), 1-lg(a)). Note that I_3 = (lg(3), 1-lg(3)) and I_a is empty otherwise. As a result, k > 0 is a term if and only if lg(3) < {k*lg(2)} < 1-lg(3). - Jianing Song, Dec 26 2022
LINKS
EXAMPLE
78 is in the sequence since 2^78 = 302231454903657293676544 and 5^78 = 3308722450212110699485634768279851414263248443603515625
98 is in the sequence since 2^98 = 316912650057057350374175801344 and 5^98 = 315544362088404722164691426113114491869282574043609201908111572265625.
MAPLE
filter:= n -> convert(2^n, base, 10)[-1]=convert(5^n, base, 10)[-1]:
select(filter, [$0..1000]); # Robert Israel, Aug 09 2018
MATHEMATICA
Select[ Range[ 1000 ], IntegerDigits[ 2^# ][ [ 1 ] ] == IntegerDigits[ 5^# ][ [ 1 ] ] & ]
PROG
(PARI) is(n)=(digits(2^n)[1]==digits(5^n)[1]);
for(n=0, 10^3, if(is(n), print1(n, ", "))); \\ Joerg Arndt, Aug 10 2018
(Python)
def ok(n): return str(2**n)[0] == str(5**n)[0]
print([k for k in range(1100) if ok(k)]) # Michael S. Branicky, Nov 03 2022
CROSSREFS
Cf. A088995.
Sequence in context: A032122 A220818 A064678 * A183937 A275971 A030487
KEYWORD
base,nonn
AUTHOR
Lekraj Beedassy, Dec 01 2003
EXTENSIONS
Edited by Robert G. Wilson v, Dec 02 2003
STATUS
approved