login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that leading digits of 2^n and 5^n are equal.
4

%I #28 Dec 26 2022 09:47:27

%S 0,5,15,78,88,98,108,118,181,191,201,211,274,284,294,304,367,377,387,

%T 397,407,470,480,490,500,563,573,583,593,603,666,676,686,696,759,769,

%U 779,789,852,862,872,882,892,955,965,975,985,1048,1058,1068,1078,1088

%N Numbers n such that leading digits of 2^n and 5^n are equal.

%C Write lg = log_10, let {x} denote the fractional part of x. Note that {k*lg(5)} = 1 - {k*lg(2)}, so we have {k > 0 : 2^k, 5^k, 8^k all start with a} = {k: {k*lg(2)} is in I_a}, where I_a = (lg(a), lg(a+1)) intersect (1-lg(a+1), 1-lg(a)). Note that I_3 = (lg(3), 1-lg(3)) and I_a is empty otherwise. As a result, k > 0 is a term if and only if lg(3) < {k*lg(2)} < 1-lg(3). - _Jianing Song_, Dec 26 2022

%H David A. Corneth, <a href="/A088935/b088935.txt">Table of n, a(n) for n = 1..10000</a>

%H T. Sillke, <a href="http://www.mathematik.uni-bielefeld.de/~sillke/PUZZLES/powers-2-5">Powers of 2 and 5 Puzzle</a>

%e 78 is in the sequence since 2^78 = 302231454903657293676544 and 5^78 = 3308722450212110699485634768279851414263248443603515625

%e 98 is in the sequence since 2^98 = 316912650057057350374175801344 and 5^98 = 315544362088404722164691426113114491869282574043609201908111572265625.

%p filter:= n -> convert(2^n,base,10)[-1]=convert(5^n,base,10)[-1]:

%p select(filter, [$0..1000]); # _Robert Israel_, Aug 09 2018

%t Select[ Range[ 1000 ], IntegerDigits[ 2^# ][ [ 1 ] ] == IntegerDigits[ 5^# ][ [ 1 ] ] & ]

%o (PARI) is(n)=(digits(2^n)[1]==digits(5^n)[1]);

%o for(n=0,10^3,if(is(n),print1(n,", "))); \\ _Joerg Arndt_, Aug 10 2018

%o (Python)

%o def ok(n): return str(2**n)[0] == str(5**n)[0]

%o print([k for k in range(1100) if ok(k)]) # _Michael S. Branicky_, Nov 03 2022

%Y Cf. A088995.

%K base,nonn

%O 1,2

%A _Lekraj Beedassy_, Dec 01 2003

%E Edited by _Robert G. Wilson v_, Dec 02 2003