login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048793 List giving all subsets of natural numbers arranged in standard statistical (or Yates) order. 141
0, 1, 2, 1, 2, 3, 1, 3, 2, 3, 1, 2, 3, 4, 1, 4, 2, 4, 1, 2, 4, 3, 4, 1, 3, 4, 2, 3, 4, 1, 2, 3, 4, 5, 1, 5, 2, 5, 1, 2, 5, 3, 5, 1, 3, 5, 2, 3, 5, 1, 2, 3, 5, 4, 5, 1, 4, 5, 2, 4, 5, 1, 2, 4, 5, 3, 4, 5, 1, 3, 4, 5, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 6, 2, 6, 1, 2, 6, 3, 6, 1, 3, 6, 2, 3, 6, 1, 2, 3, 6, 4, 6, 1, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

For n>0: first occurrence of n in row 2^(n-1), and when the table is seen as a flattened list at position n*2^(n-1)+1, cf. A005183. - Reinhard Zumkeller, Nov 16 2013

Row n lists the positions of 1's in the reversed binary expansion of n. Compare to triangles A112798 and A213925. - Gus Wiseman, Jul 22 2019

REFERENCES

S. Hedayat, N. J. A. Sloane and J. Stufken, Orthogonal Arrays, Springer-Verlag, NY, 1999, p. 249.

LINKS

Reinhard Zumkeller, Rows n = 0..1000 of triangle, flattened

FORMULA

Constructed recursively: subsets that include n are obtained by appending n to all earlier subsets.

EXAMPLE

From Gus Wiseman, Jul 22 2019: (Start)

Triangle begins:

  {}

  1

  2

  1  2

  3

  1  3

  2  3

  1  2  3

  4

  1  4

  2  4

  1  2  4

  3  4

  1  3  4

  2  3  4

  1  2  3  4

  5

  1  5

  2  5

  1  2  5

  3  5

(End)

MAPLE

T:= proc(n) local i, l, m; l:= NULL; m:= n;

      if n=0 then return 0 fi; for i while m>0 do

      if irem(m, 2, 'm')=1 then l:=l, i fi od; l

    end:

seq(T(n), n=1..50);  # Alois P. Heinz, Sep 06 2014

MATHEMATICA

s[0] = {{}}; s[n_] := s[n] = Join[s[n - 1], Append[#, n]& /@ s[n - 1]]; Join[{0}, Flatten[s[6]]] (* Jean-Fran├žois Alcover, May 24 2012 *)

Table[Join@@Position[Reverse[IntegerDigits[n, 2]], 1], {n, 30}] (* Gus Wiseman, Jul 22 2019 *)

PROG

(C:) #include <stdio.h> #include <stdlib.h> #define USAGE "Usage: 'A048793 num' where num is the largest number to use creating sets.\n" #define MAX_NUM 10 #define MAX_ROW 1024 int main(int argc, char *argv[]) { unsigned short a[MAX_ROW][MAX_NUM]; signed short old_row, new_row, i, j, end; if (argc < 2) { fprintf(stderr, USAGE); return EXIT_FAILURE; } end = atoi(argv[1]); end = (end > MAX_NUM) ? MAX_NUM: end; for (i = 0; i < MAX_ROW; i++) for ( j = 0; j < MAX_NUM; j++) a[i][j] = 0; a[1][0] = 1; new_row = 2; for (i = 2; i <= end; i++) { a[new_row++ ][0] = i; for (old_row = 1; a[old_row][0] != i; old_row++) { for (j = 0; a[old_row][j] != 0; j++) { a[new_row][j] = a[old_row][j]; } a[new_row++ ][j] = i; } } fprintf(stdout, "Values: 0"); for (i = 1; a[i][0] != 0; i++) for (j = 0; a[i][j] != 0; j++) fprintf(stdout, ", %d", a[i][j]); fprintf(stdout, "\n"); return EXIT_SUCCESS; }

(Haskell)

a048793 n k = a048793_tabf !! n !! k

a048793_row n = a048793_tabf !! n

a048793_tabf = [0] : [1] : f [[1]] where

   f xss = yss ++ f (xss ++ yss) where

     yss = [y] : map (++ [y]) xss

     y = last (last xss) + 1

-- Reinhard Zumkeller, Nov 16 2013

CROSSREFS

Cf. A048794.

Row lengths are A000120.

First column is A001511.

Row sums are A029931.

Reversing rows gives A272020.

Indices of relatively prime rows are A291166 (see also A326674); arithmetic progressions are A295235; rows with integer average are A326669 (see also A326699/A326700); pairwise coprime rows are A326675.

Cf. A035327, A070939.

Sequence in context: A002343 A082076 A231516 * A249783 A209278 A326921

Adjacent sequences:  A048790 A048791 A048792 * A048794 A048795 A048796

KEYWORD

nonn,tabf,easy,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Larry Reeves (larryr(AT)acm.org), Apr 11 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 7 11:03 EDT 2020. Contains 333301 sequences. (Running on oeis4.)