login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A213925 Triangle read by rows: n-th row contains Fermi-Dirac representation of n. 39
1, 2, 3, 4, 5, 2, 3, 7, 2, 4, 9, 2, 5, 11, 3, 4, 13, 2, 7, 3, 5, 16, 17, 2, 9, 19, 4, 5, 3, 7, 2, 11, 23, 2, 3, 4, 25, 2, 13, 3, 9, 4, 7, 29, 2, 3, 5, 31, 2, 16, 3, 11, 2, 17, 5, 7, 4, 9, 37, 2, 19, 3, 13, 2, 4, 5, 41, 2, 3, 7, 43, 4, 11, 5, 9, 2, 23, 47, 3, 16, 49, 2, 25 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Unique factorization of n into distinct prime powers of form p^(2^k), cf. A050376:  Product_{k=1..A064547(n)} T(n,k) = n.

LINKS

Alois P. Heinz, Rows n = 1..8000, flattened (first 1000 rows from Reinhard Zumkeller)

OEIS Wiki, "Fermi-Dirac representation" of n

EXAMPLE

First rows:

.     1:    1

.     2:    2

.     3:    3

.     4:    4

.     5:    5

.     6:    2  3

.     7:    7

.     8:    2  4                   8 = 2^2^0 * 2^2^1

.     9:    9

.    10:    2  5

.......

.   990:    2   5  9  11

.   991:  991

.   992:    2  16 31             992 = 2^2^0 * 2^2^2 * 31^2^0

.   993:    3 331

.   994:    2   7 71

.   995:    5 199

.   996:    3   4 83

.   997:  997

.   998:    2 499

.   999:    3   9 37             999 = 3^2^0 * 3^2^1 * 37^2^0

.  1000:    2   4  5  25        1000 = 2^2^0 * 2^2^1 * 5^2^0 * 5^2^1 .

MAPLE

T:= n-> `if`(n=1, [1], sort([seq((l-> seq(`if`(l[j]=1, i[1]^(2^(j-1)), [][]),

             j=1..nops(l)))(convert(i[2], base, 2)), i=ifactors(n)[2])]))[]:

seq(T(n), n=1..60);  # Alois P. Heinz, Feb 20 2018

MATHEMATICA

nmax = 50; FDPrimes = Reap[k = 1; While[lim = nmax^(1/k); lim > 2, Sow[Prime[Range[PrimePi[lim]]]^k]; k = 2 k]][[2, 1]] // Flatten // Union;

f[1] = 1; f[n_] := Reap[m = n; Do[If[m == 1, Break[], If[Divisible[m, p], m = m/p; Sow[p]]], {p, Reverse[FDPrimes]}]][[2, 1]] // Reverse;

Array[f, nmax] // Flatten (* Jean-Fran├žois Alcover, Feb 05 2019 *)

PROG

(Haskell)

a213925 n k = a213925_row n !! (k-1)

a213925_row 1 = [1]

a213925_row n = reverse $ fd n (reverse $ takeWhile (<= n) a050376_list)

   where fd 1 _      = []

         fd x (q:qs) = if m == 0 then q : fd x' qs else fd x qs

                       where (x', m) = divMod x q

a213925_tabf = map a213925_row [1..]

CROSSREFS

Cf. A050376.

For n > 1: A064547 (row lengths), A181894 (row sums), A223490, A223491.

Sequence in context: A094937 A215089 A161768 * A141810 A141809 A309435

Adjacent sequences:  A213922 A213923 A213924 * A213926 A213927 A213928

KEYWORD

nonn,tabf

AUTHOR

Reinhard Zumkeller, Mar 20 2013

EXTENSIONS

Example corrected (row 992) by Reinhard Zumkeller, Mar 11 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 16:46 EDT 2019. Contains 328373 sequences. (Running on oeis4.)