login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213928
Natural numbers placed in table T(n,k) layer by layer. The order of placement - at the beginning 2 layers counterclockwise, next 1 layer clockwise and so on. T(n,k) read by antidiagonals.
2
1, 4, 2, 5, 3, 9, 16, 6, 8, 10, 25, 15, 7, 11, 17, 26, 24, 14, 12, 18, 36, 49, 27, 23, 13, 19, 35, 37, 64, 48, 28, 22, 20, 34, 38, 50, 65, 63, 47, 29, 21, 33, 39, 51, 81, 100, 66, 62, 46, 30, 32, 40, 52, 80, 82, 121, 99, 67, 61, 45, 31, 41, 53, 79, 83, 101
OFFSET
1,2
COMMENTS
Permutation of the natural numbers. a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.In general, let b(z) be a sequence of integer numbers. Layer is pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1). Natural numbers placed in table T(n,k) layer by layer. The order of placement - layer is counterclockwise, if b(z) is odd; layer is clockwise if b(z) is even. T(n,k) read by antidiagonals.For A219159 - the order of the placement - at the beginning m layers counterclockwise, next m layers clockwise and so on - b(z)=floor((z-1)/m)+1. For this sequence b(z)=z^2 mod 3.
FORMULA
For general case.
As table
T(n,k) = ((1+(-1)^(b(k)-1))*(k^2-n+1)-(-1+(-1)^(b(k)-1))*((k-1)^2 +n))/2, if k >= n;
T(n,k) = ((1+(-1)^b(n))*(n^2-k+1)-(-1+(-1)^b(n))*((n-1)^2 +k))/2, if n >k.
As linear sequence
a(n) = ((1+(-1)^(b(j)-1))*(j^2-i+1)-(-1+(-1)^(b(j)-1))*((j-1)^2 +i))/2, if j >= i;
a(n) = ((1+(-1)^b(i))*(i^2-j+1)-(-1+(-1)^b(i))*((i-1)^2 +j))/2, if i >j;
where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).
For this sequence b(z)=z^2 mod 3.
As table
T(n,k) = ((1+(-1)^(k^2 mod 3-1))*(k^2-n+1)-(-1+(-1)^(k^2 mod 3-1))*((k-1)^2 +n))/2, if k >= n;
T(n,k) = ((1+(-1)^(n^2 mod 3))*(n^2-k+1)-(-1+(-1)^(n^2 mod 3))*((n-1)^2 +k))/2, if n >k.
As linear sequence
a(n) = ((1+(-1)^(j^2 mod 3-1))*(j^2-i+1)-(-1+(-1)^(j^2 mod 3-1))*((j-1)^2 +i))/2, if j >= i;
a(n) = ((1+(-1)^(i^2 mod 3))*(i^2-j+1)-(-1+(-1)^(i^2 mod 3))*((i-1)^2 +j))/2, if i >j;
where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).
EXAMPLE
The start of the sequence as table.
The direction of the placement denotes by ">" and "v".
..........v...........v...........v
>1....4...5..16..25..26..49..64..65...
>2....3...6..15..24..27..48..63..66...
.9....8...7..14..23..28..47..62..67...
>10..11..12..13..22..29..46..61..68...
>17..18..19..20..21..30..45..60..69...
.36..35..34..33..32..31..44..59..70...
>37..38..39..40..41..42..43..58..71...
>50..51..52..53..54..55..56..57..72...
.81..80..79..78..77..76..75..74..73...
. . .
The start of the sequence as triangle array read by rows:
1;
4,2;
5,3,9;
16,6,8,10;
25,15,7,11,17;
26,24,14,12,18,36;
49,27,23,13,19,35,37;
64,48,28,22,20,34,38,50;
65,63,47,29,21,33,39,51,81;
. . .
PROG
(Python)
t=int((math.sqrt(8*n-7) - 1)/ 2)
i=n-t*(t+1)/2
j=(t*t+3*t+4)/2-n
if j>=i:
result=((1+(-1)**(j**2%3-1))*(j**2-i+1)-(-1+(-1)**(j**2%3-1))*((j-1)**2 +i))/2
else:
result=((1+(-1)**(i**2%3))*(i**2-j+1)-(-1+(-1)**(i**2%3))*((i-1)**2 +j))/2
KEYWORD
nonn,tabl
AUTHOR
Boris Putievskiy, Mar 06 2013
STATUS
approved