OFFSET
1,2
COMMENTS
Arrange the natural numbers by taking clockwise and counterclockwise turns. Begin (LL) and then repeat (RRR)(LLL).
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers. - Boris Putievskiy, Dec 16 2012
LINKS
Boris Putievskiy, Rows n = 1..100 of triangle, flattened
Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
Eric Weisstein's World of Mathematics, Pairing functions
FORMULA
From Boris Putievskiy, Dec 19 2012: (Start)
a(n) = (i-1)^2 + i + (i-j)*(-1)^(i-1) if i >= j,
a(n) = (j-1)^2 + j - (j-i)*(-1)^(j-1) if i < j,
where
i = n - t*(t+1)/2,
j = (t*t + 3*t + 4)/2-n,
t = floor((-1 + sqrt(8*n-7))/2). (End)
EXAMPLE
The start of the sequence as table T(i,j), i,j > 0:
1 .. 4 .. 5 .. 16...
2 .. 3 .. 6 .. 15...
9 .. 8 .. 7 .. 14...
10..11 ..12 .. 13...
. . .
Enumeration by boustrophedonic ("ox-plowing") method: If i >= j: T(i,i)=(i-1)^2+i + (i-j)*(-1)^(i-1), if i < j: T(i,j)=(j-1)^2+j - (j-i)*(-1)^(j-1). - Boris Putievskiy, Dec 19 2012
MATHEMATICA
T[n_, k_] := T[n, k] = Which[OddQ[n] && k==1, n^2, EvenQ[k] && n==1, k^2, EvenQ[n] && k==1, T[n-1, 1]+1, OddQ[k] && n==1, T[1, k-1]+1, k <= n, T[n, k-1]+1 - 2 Mod[n, 2], True, T[n-1, k]-1 + 2 Mod[k, 2]]; Table[T[n-k+1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 20 2019 *)
PROG
(Python)
t=int((math.sqrt(8*n-7) - 1)/ 2)
i=n-t*(t+1)/2
j=(t*t+3*t+4)/2-n
if j >= i:
m=(j-1)**2 + j + (j-i)*(-1)**(j-1)
else:
m=(i-1)**2 + i - (i-j)*(-1)**(i-1)
# Boris Putievskiy, Dec 19 2012
(Python)
from math import isqrt
def A081344(n):
t = (k:=isqrt(m:=n<<1))+((m<<2)>(k<<2)*(k+1)+1)-1
i, j = n-(t*(t+1)>>1), (t*(t+3)>>1)+2-n
r = max(i, j)
return (r-1)**2+r+(j-i if r&1 else i-j) # Chai Wah Wu, Nov 04 2024
CROSSREFS
Cf. A219159, A213928. The main diagonal is A002061. The following appear within interlaced sequences: A016754, A001844, A053755, A004120. The first row is A081345. The first column is A081346. The inverse permutation A194280, the first inverse function (numbers of rows) A220603, the second inverse function (numbers of columns) A220604.
KEYWORD
nonn,tabl
AUTHOR
Paul Barry, Mar 19 2003
STATUS
approved