OFFSET
0,2
COMMENTS
Binomial transform of A034494.
5th binomial transform of {1, 0, 9, 0, 81, 0, 729, 0, ...}.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Index entries for linear recurrences with constant coefficients, signature (10,-16).
FORMULA
a(n) = (8^n + 2^n)/2.
a(n) = 10*a(n-1) - 16*a(n-2), a(0)=1, a(1)=5.
G.f.: (1-5*x)/((1-2*x)*(1-8*x)).
E.g.f.: exp(5*x)*cosh(3*x).
a(n) = ((5+sqrt(9))^n + (5-sqrt(9))^n)/2. - Al Hakanson (hawkuu(AT)gmail.com), Dec 08 2008
a(n) = A074603(n)/2. - Michel Marcus, Jan 09 2020
MAPLE
seq( (8^n + 2^n)/2, n=0..30); # G. C. Greubel, Jan 08 2020
MATHEMATICA
Table[(8^n + 2^n)/2, {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Jun 12 2011 *)
PROG
(Magma) [(8^n+2^n)/2: n in [0..30]]; // Vincenzo Librandi, Jun 13 2011
(PARI) a(n)=(8^n+2^n)/2 \\ Charles R Greathouse IV, Sep 28 2015
(Sage) [(8^n + 2^n)/2 for n in (0..30)] # G. C. Greubel, Jan 08 2020
(GAP) List([0..30], n-> (8^n + 2^n)/2); # G. C. Greubel, Jan 08 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 18 2003
STATUS
approved