login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002776
Terms in certain determinants.
(Formerly M3972 N1642)
2
1, 5, 34, 258, 2136, 19320, 190800, 2051280, 23909760, 300827520, 4067884800, 58877280000, 908666035200, 14901260774400, 258832346572800, 4748165630208000, 91746433658880000, 1862735060938752000, 39649900359573504000, 883021783867711488000
OFFSET
0,2
COMMENTS
a(n) equals (n+1)^2 times the permanent of the (n+1) X (n+1) matrix with 1/(n+1) in the top right corner, 1/(n+1) in the bottom left corner, and 1's everywhere else. - John M. Campbell, May 25 2011
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. D. H. Dickson, Discussion of two double series arising from the number of terms in determinants of certain forms, Proc. London Math. Soc., 10 (1879), 120-122. [Annotated scanned copy]
FORMULA
a(n) = (n^3 + n^2 + 2*n + 1)*n!.
a(n) = (n+3)! - 5*(n+2)! + 6*(n+1)! - n!. - Umut Özer, Dec 26 2017
E.g.f.: (1 + x + 3*x^2 + x^3)/(1 - x)^4. - Stefano Spezia, Apr 17 2022
MAPLE
A002776 := [seq(factorial(n+3) - 5 * factorial(n+2) + 6 * factorial(n+1) - factorial(n), n=0..100)]; # Muniru A Asiru, Jan 15 2018
MATHEMATICA
Table[(n^3+n^2+2n+1)n!, {n, 0, 30}] (* Harvey P. Dale, Oct 28 2011 *)
PROG
(GAP) A002776 := List([0..100], n -> Factorial(n+3) - 5 * Factorial(n+2) + 6 * Factorial(n+1) - Factorial(n)); # Muniru A Asiru, Jan 15 2018
(Magma) [(n^3+n^2+2*n+1)*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Jan 19 2018
CROSSREFS
Cf. A047922.
Sequence in context: A080503 A078284 A083987 * A333804 A081342 A248055
KEYWORD
nonn,easy,nice
EXTENSIONS
Edited by Dean Hickerson, Sep 20 2002
STATUS
approved