
REFERENCES

Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 138.
Knuth, Donald E. "The asymptotic number of geometries." Journal of Combinatorial Theory, Series A 16.3 (1974): 398400.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=0..9.
N. Bansal, R. Pendavingh, and J. G. van der Pol, On the number of matroids, arXiv:1206.6270v1 [math.CO], 2012.
Nikhil Bansal, Rudi A. Pendavingh, and Jorn G. van der Pol, On the number of matroids, Proceedings of the TwentyFourth Annual ACMSIAM Symposium on Discrete Algorithms. SIAM, 2013; full version in Combinatorica, 35:3 (2015), 253277.
J. E. Blackburn, H. H. Crapo, and D. A. Higgs, A catalogue of combinatorial geometries, Math. Comp 27 (1973), 155166.
Henry H. Crapo and GianCarlo Rota, On the foundations of combinatorial theory. II. Combinatorial geometries, Studies in Appl. Math. 49 (1970), 109133.
Henry H. Crapo and GianCarlo Rota, On the foundations of combinatorial theory. II. Combinatorial geometries, Studies in Appl. Math. 49 (1970), 109133. [Annotated scanned copy of pages 126 and 127 only]
W. M. B. Dukes, Tables of matroids.
W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
W. M. B. Dukes, On the number of matroids on a finite set, SÃ©minaire Lotharingien de Combinatoire 51 (2004), Article B51g.
Dillon Mayhew and Gordon F. Royle, Matroids with nine elements, arXiv:math/0702316 [math.CO], 2007.
Dillon Mayhew and Gordon F. Royle, Matroids with nine elements, J. Combin. Theory Ser. B 98(2) (2008), 415431.
Gordon Royle and Dillon Mayhew, 9element matroids.
N. J. A. Sloane, Initial terms (* denotes 5 points in general position in 4space).
Eric Weisstein's World of Mathematics, Matroid.
Index entries for sequences related to matroids
