login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055545 Number of unlabeled matroids on n points. 6
1, 2, 4, 8, 17, 38, 98, 306, 1724, 383172 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
This is the total number of pairwise non-isomorphic (i.e., "unlabeled") matroids on n points, with no restrictions on loops, parallel elements etc.
Partial sums of A058718. - Jonathan Vos Post, Apr 25 2010
REFERENCES
J. G. Oxley, Matroid Theory. Oxford, England: Oxford University Press, 1993. See p. 473.
LINKS
Dragan M. Acketa, On the enumeration of matroids of rank-2, Zbornik radova Prirodnomatematickog fakulteta-Univerzitet u Novom Sadu 8 (1978): 83-90. - N. J. A. Sloane, Dec 04 2022
Jayant Apte and J. M. Walsh, Constrained Linear Representability of Polymatroids and Algorithms for Computing Achievability Proofs in Network Coding, arXiv preprint arXiv:1605.04598 [cs.IT], 2016-2017.
Jesus DeLoera, Yvonne Kemper, and Steven Klee, h-vectors of small matroid complexes, arXiv:1106.2576 [math.CO], 2011.
W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
S. C. Locke, Matroids
Dillon Mayhew and Gordon F. Royle, Matroids with nine elements, arXiv:math/0702316 [math.CO], 2007.
Dillon Mayhew and Gordon F. Royle, Matroids with nine elements, J. Combin. Theory Ser. B 98(2) (2008), 415-431.
Gordon Royle and Dillon Mayhew, 9-element matroids.
Eric Weisstein's World of Mathematics, Matroid.
Eric Weisstein's World of Mathematics, Graph Vertex.
D. J. A. Welsh, A bound for the number of matroids, J. Combinat. Theory, Ser. A, 6 (1969), 313-316. - From N. J. A. Sloane, May 06 2012
CROSSREFS
Cf. A002773, A058673 (labeled matroids), A058718.
Row sums of A053534.
Sequence in context: A325921 A049312 A132043 * A241671 A036375 A036376
KEYWORD
nonn,nice,more
AUTHOR
EXTENSIONS
a(9) from Gordon Royle, Dec 23 2006
Name clarified by Lorenzo Sauras Altuzarra, Aug 10 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 17:58 EST 2023. Contains 367680 sequences. (Running on oeis4.)