login
A049312
Number of graphs with a distinguished bipartite block, by number of vertices.
14
1, 2, 4, 8, 17, 38, 94, 258, 815, 3038, 13804, 78760, 580456, 5647602, 73645352, 1297920850, 31031370360, 1007551636038, 44432872400460, 2661065508648436, 216457998880015366, 23920728651724212120, 3593384834863975164882, 734240676501745813835934
OFFSET
0,2
COMMENTS
Calculate number of connected bipartite graphs + number of connected bipartite graphs with no duality automorphism, apply EULER transform.
Inverse Euler transform is A318870.
REFERENCES
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
LINKS
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Karen L. Collins, Ann N. Trenk, Finding Balance: Split Graphs and Related Classes, arXiv:1706.03092 [math.CO], June 2017.
M. Guay-Paquet, A. H. Morales and E. Rowland, Structure and enumeration of (3+ 1)-free posets, arXiv preprint arXiv:1212.5356 [math.CO], 2012-2013. - From N. J. A. Sloane, Feb 01 2013
J. M. Troyka, Split graphs: combinatorial species and asymptotics, arXiv:1803.07248 [math.CO], 2018-2019.
J. M. Troyka, Split graphs: combinatorial species and asymptotics, Electron. J. Combin., 26 (2019), #P2.42.
E. M. Wright, The k-connectedness of bipartite graphs, J. Lond. Math. Soc. (2), 25 (1982), 7-12.
FORMULA
a(n) ~ 1/n! A047863(n) = 1/n! Sum_{k=0..n} binomial(n,k) * 2^(k(n-k)) (see Wright; see also Thm. 3.7 of the Troyka link, which cites Wright). - Justin M. Troyka, Oct 29 2018
EXAMPLE
a(2)=4: null graph with 0, 1 or 2 vertices in the distinguished block and complete graph with 1 vertex in distinguished block.
MAPLE
b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {},
{seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)}))
end:
g:= proc(n, k) option remember; add(add(2^add(add(igcd(i, j)*
coeff(s, x, i)* coeff(t, x, j), j=1..degree(t)),
i=1..degree(s))/mul(i^coeff(s, x, i)*coeff(s, x, i)!,
i=1..degree(s))/mul(i^coeff(t, x, i)*coeff(t, x, i)!,
i=1..degree(t)), t=b(n+k$2)), s=b(n$2))
end:
A:= (n, k)-> g(min(n, k), abs(n-k)):
a:= d-> add(A(n, d-n), n=0..d):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 01 2014
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i<1, {}, Flatten @ Table[ Map[ Function[ {p}, p+j*x^i], b[n-i*j, i-1]], {j, 0, n/i}]]];
g[n_, k_] := g[n, k] = Sum[ Sum[ 2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]*Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n+k, n+k]}], {s, b[n, n]}];
A[n_, k_] := g[Min[n, k], Abs[n-k]];
a[d_] := Sum[A[n, d-n], {n, 0, d}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)
CROSSREFS
Row sums of A028657.
Sequence in context: A101516 A118928 A325921 * A132043 A055545 A241671
KEYWORD
nonn,nice
EXTENSIONS
More terms from Vladeta Jovovic, Jun 17 2000
STATUS
approved