OFFSET
0,2
COMMENTS
Calculate number of connected bipartite graphs + number of connected bipartite graphs with no duality automorphism, apply EULER transform.
Inverse Euler transform is A318870.
REFERENCES
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..40
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Karen L. Collins, Ann N. Trenk, Finding Balance: Split Graphs and Related Classes, arXiv:1706.03092 [math.CO], June 2017.
M. Guay-Paquet, A. H. Morales and E. Rowland, Structure and enumeration of (3+ 1)-free posets, arXiv preprint arXiv:1212.5356 [math.CO], 2012-2013. - From N. J. A. Sloane, Feb 01 2013
J. M. Troyka, Split graphs: combinatorial species and asymptotics, arXiv:1803.07248 [math.CO], 2018-2019.
J. M. Troyka, Split graphs: combinatorial species and asymptotics, Electron. J. Combin., 26 (2019), #P2.42.
E. M. Wright, The k-connectedness of bipartite graphs, J. Lond. Math. Soc. (2), 25 (1982), 7-12.
FORMULA
a(n) ~ 1/n! A047863(n) = 1/n! Sum_{k=0..n} binomial(n,k) * 2^(k(n-k)) (see Wright; see also Thm. 3.7 of the Troyka link, which cites Wright). - Justin M. Troyka, Oct 29 2018
EXAMPLE
a(2)=4: null graph with 0, 1 or 2 vertices in the distinguished block and complete graph with 1 vertex in distinguished block.
MAPLE
b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {},
{seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)}))
end:
g:= proc(n, k) option remember; add(add(2^add(add(igcd(i, j)*
coeff(s, x, i)* coeff(t, x, j), j=1..degree(t)),
i=1..degree(s))/mul(i^coeff(s, x, i)*coeff(s, x, i)!,
i=1..degree(s))/mul(i^coeff(t, x, i)*coeff(t, x, i)!,
i=1..degree(t)), t=b(n+k$2)), s=b(n$2))
end:
A:= (n, k)-> g(min(n, k), abs(n-k)):
a:= d-> add(A(n, d-n), n=0..d):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 01 2014
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i<1, {}, Flatten @ Table[ Map[ Function[ {p}, p+j*x^i], b[n-i*j, i-1]], {j, 0, n/i}]]];
g[n_, k_] := g[n, k] = Sum[ Sum[ 2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]*Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n+k, n+k]}], {s, b[n, n]}];
A[n_, k_] := g[Min[n, k], Abs[n-k]];
a[d_] := Sum[A[n, d-n], {n, 0, d}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Jun 17 2000
STATUS
approved