login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118928
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*C(n-k,k+1)/(n-k) * a(k), with a(0)=1.
1
1, 1, 1, 2, 4, 8, 17, 38, 92, 238, 643, 1790, 5076, 14573, 42241, 123484, 364052, 1082602, 3247759, 9829820, 30019326, 92517644, 287805801, 903822922, 2865339252, 9168572009, 29601077285, 96377791839, 316264456921
OFFSET
0,4
COMMENTS
Invariant column vector V under matrix product A089732 *V = V: a(n) = Sum_{k=0,[n/2]} A089732 (n,k)*a(k), where A089732(n,k) = number of peakless Motzkin paths of length n having k (1,1) steps.
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*C(n-k,k+1)/(n-k) * a(k), with a(0)=1.
MATHEMATICA
a[n_]:= a[n]= If[n==0, 1, Sum[Binomial[n-k, k]*Binomial[n-k, k+1]*a[k]/(n-k), {k, 0, Floor[n/2]}]];
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Nov 24 2021 *)
PROG
(PARI) {a(n)=if(n==0, 1, sum(k=0, n\2, binomial(n-k, k)*binomial(n-k, k+1)/(n-k)*a(k)))}
(Sage)
@CachedFunction
def A118928(n):
if (n==0): return 1
else: return sum( binomial(n-k, k)*binomial(n-k, k+1)*A118928(k)/(n-k) for k in (0..n//2) )
[A118928(n) for n in (0..30)] # G. C. Greubel, Nov 24 2021
CROSSREFS
Cf. A089732.
Sequence in context: A340776 A090901 A101516 * A325921 A049312 A132043
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 06 2006
STATUS
approved