|
|
A118928
|
|
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*C(n-k,k+1)/(n-k) * a(k), with a(0)=1.
|
|
1
|
|
|
1, 1, 1, 2, 4, 8, 17, 38, 92, 238, 643, 1790, 5076, 14573, 42241, 123484, 364052, 1082602, 3247759, 9829820, 30019326, 92517644, 287805801, 903822922, 2865339252, 9168572009, 29601077285, 96377791839, 316264456921
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
Invariant column vector V under matrix product A089732 *V = V: a(n) = Sum_{k=0,[n/2]} A089732 (n,k)*a(k), where A089732(n,k) = number of peakless Motzkin paths of length n having k (1,1) steps.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*C(n-k,k+1)/(n-k) * a(k), with a(0)=1.
|
|
MATHEMATICA
|
a[n_]:= a[n]= If[n==0, 1, Sum[Binomial[n-k, k]*Binomial[n-k, k+1]*a[k]/(n-k), {k, 0, Floor[n/2]}]];
|
|
PROG
|
(PARI) {a(n)=if(n==0, 1, sum(k=0, n\2, binomial(n-k, k)*binomial(n-k, k+1)/(n-k)*a(k)))}
(Sage)
@CachedFunction
if (n==0): return 1
else: return sum( binomial(n-k, k)*binomial(n-k, k+1)*A118928(k)/(n-k) for k in (0..n//2) )
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|