login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118930
E.g.f.: A(x) = exp( Sum_{n>=0} x^(2^n)/2^(2^n-1) ).
7
1, 1, 2, 4, 13, 41, 166, 652, 3494, 18118, 114076, 681176, 5016892, 35377564, 288204008, 2232198256, 21124254181, 191779964597, 2011347229114, 19840403629108, 231266808172181, 2553719667653281, 31743603728993542
OFFSET
0,3
COMMENTS
Equals invariant column vector V that satisfies matrix product A100861*V = V, where Bessel numbers A100861(n,k) = n!/[k!(n-2k)!*2^k] give the number of k-matchings of the complete graph K(n).
Equals Lim_{n->inf.} A144299^n, if A144299 is considered an infinite lower triangular matrix. - Gary W. Adamson, Dec 08 2008
FORMULA
a(n) = Sum_{k=0..[n/2]} n!/[k!*(n-2*k)!*2^k] * a(k), with a(0)=1. a(n) = Sum_{k=0..[n/2]} A100861(n,k)*a(k), with a(0)=1.
EXAMPLE
E.g.f. A(x) = exp( x + x^2/2 + x^4/2^3 + x^8/2^7 + x^16/2^15 +...)
= 1 + 1*x + 2*x^2/2! + 4*x^3/3! + 13*x^4/4! + 41*x^5/5!+ 166*x^6/6!+...
Using coefficients A100861(n,k) = n!/[k!(n-2k)!*2^k]:
a(5) = 1*a(0) +10*a(1) +15*a(2) = 1*1 +10*1 +15*2 = 41.
a(6) = 1*a(0) +15*a(1) +45*a(2) +15*a(3) = 1*1 +15*1 +45*2 +15*4 = 166.
MAPLE
A118930 := proc(n)
option remember;
if n<= 1 then
1 ;
else
n!*add(procname(k)/k!/(n-2*k)!/2^k, k=0..n/2) ;
end if;
end proc;
seq(A118930(n), n=0..10) ; # R. J. Mathar, Aug 19 2014
MATHEMATICA
a[n_] := a[n] = If[n==0, 1, Sum[Binomial[n, 2k] (2k-1)!! a[k], {k, 0, n/2}]];
a /@ Range[0, 22] (* Jean-François Alcover, Mar 26 2020 *)
PROG
(PARI) {a(n)=if(n==0, 1, sum(k=0, n\2, n!/(k!*(n-2*k)!*2^k)*a(k)))}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* Defined by E.G.F.: */
{a(n)=n!*polcoeff( exp(sum(k=0, #binary(n), x^(2^k)/2^(2^k-1))+x*O(x^n)), n, x)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A100861; variants: A118932, A118935.
Equals row sums of triangle A152685. - Gary W. Adamson, Dec 10 2008
Cf. A144299. - Gary W. Adamson, Dec 08 2008
Sequence in context: A148256 A163136 A325578 * A355194 A087214 A259239
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 06 2006
STATUS
approved