login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118929
a(n) = Sum_{k=0..[n/2]} 2^(n-2*k-1)*C(n-1,2*k)*C(2*k,k)/(k+1)*a(k), with a(0)=1.
0
1, 1, 2, 5, 14, 44, 152, 569, 2270, 9524, 41576, 187432, 868144, 4117216, 19945408, 98523013, 495521686, 2534420852, 13167361256, 69417635240, 370991119792, 2008036459744, 10997771773888, 60896581502800, 340633178891872
OFFSET
0,3
COMMENTS
Invariant column vector V under matrix product A091894*V = V: a(n) = Sum_{k=0,[n/2]} A091894(n,k)*a(k), where A091894(n,k) = number of Dyck paths of semilength n, having k ddu's [here u=(1,1) and d=(1,-1)].
PROG
(PARI) {a(n)=if(n==0, 1, sum(k=0, n\2, 2^(n-2*k-1)*binomial(n-1, 2*k)*binomial(2*k, k)/(k+1)*a(k)))}
CROSSREFS
Cf. A091894.
Sequence in context: A119021 A002890 A202856 * A287252 A204064 A081558
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 06 2006
STATUS
approved