login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118931
Triangle, read by rows, where T(n,k) = n!/(k!*(n-3*k)!*3^k) for n>=3*k>=0.
5
1, 1, 1, 1, 2, 1, 8, 1, 20, 1, 40, 40, 1, 70, 280, 1, 112, 1120, 1, 168, 3360, 2240, 1, 240, 8400, 22400, 1, 330, 18480, 123200, 1, 440, 36960, 492800, 246400, 1, 572, 68640, 1601600, 3203200, 1, 728, 120120, 4484480, 22422400, 1, 910, 200200, 11211200, 112112000, 44844800
OFFSET
0,5
COMMENTS
Row n contains 1+floor(n/3) terms. Row sums yield A001470. Given column vector V = A118932, then V is invariant under matrix product T*V = V, or, A118932(n) = Sum_{k=0..n} T(n,k)*A118932(k). Given C = Pascal's triangle and T = this triangle, then matrix product M = C^-1*T yields M(3n,n) = (3*n)!/(n!*3^n), 0 otherwise (cf. A100861 formula due to Paul Barry).
FORMULA
E.g.f.: A(x,y) = exp(x + y*x^3/3).
EXAMPLE
Triangle T begins:
1;
1;
1;
1, 2;
1, 8;
1, 20;
1, 40, 40;
1, 70, 280;
1, 112, 1120;
1, 168, 3360, 2240;
1, 240, 8400, 22400;
1, 330, 18480, 123200;
1, 440, 36960, 492800, 246400;
MAPLE
Trow := n -> seq(n!/(j!*(n - 3*j)!*(3^j)), j = 0..n/3):
seq(Trow(n), n = 0..14); # Peter Luschny, Jun 06 2021
MATHEMATICA
T[n_, k_]:= If[n<3*k, 0, n!/(3^k*k!*(n-3*k)!)];
Table[T[n, k], {n, 0, 20}, {k, 0, Floor[n/3]}]//Flatten (* G. C. Greubel, Mar 07 2021 *)
PROG
(PARI) T(n, k)=if(n<3*k, 0, n!/(k!*(n-3*k)!*3^k))
(Sage)
f=factorial;
flatten([[0 if n<3*k else f(n)/(3^k*f(k)*f(n-3*k)) for k in [0..n/3]] for n in [0..20]]) # G. C. Greubel, Mar 07 2021
(Magma)
F:= Factorial;
[n lt 3*k select 0 else F(n)/(3^k*F(k)*F(n-3*k)): k in [0..Floor(n/3)], n in [0..20]]; // G. C. Greubel, Mar 07 2021
CROSSREFS
Cf. A001470 (row sums), A118932 (invariant vector).
Variants: A100861, A118933.
Sequence in context: A008308 A176889 A208753 * A101280 A321280 A351708
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, May 06 2006
STATUS
approved