login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001470 Number of degree-n permutations of order dividing 3.
(Formerly M2782 N1118)
45
1, 1, 1, 3, 9, 21, 81, 351, 1233, 5769, 31041, 142011, 776601, 4874013, 27027729, 168369111, 1191911841, 7678566801, 53474964993, 418199988339, 3044269834281, 23364756531621, 199008751634001, 1605461415071823 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..631 (terms 0..100 from T. D. Noe)

Joerg Arndt, Generating Random Permutations, PhD thesis, Australian National University, Canberra, Australia, (2010).

Marcello Artioli, Giuseppe Dattoli, Silvia Licciardi, Simonetta Pagnutti, Motzkin Numbers: an Operational Point of View, arXiv:1703.07262 [math.CO], 2017. See p. 7.

L. Moser and M. Wyman, On solutions of x^d = 1 in symmetric groups, Canad. J. Math., 7 (1955), 159-168.

FORMULA

a(n) = Sum_{j=0..floor(n/3)} n!/(j!*(n-3j)!*(3^j)) (the latter formula from Roger Cuculière).

E.g.f.: exp(x+1/3*x^3).

a(n) = a(n-1)+(n-1)*(n-2)*a(n-3). - Geoffrey Critzer, Feb 03 2009

a(n) = n!*Sum_{k=floor(n/3), n} (if mod(n-k,2)=0 then binomial(k,(3*k-n)/2)*(1/3)^((n-k)/2)/k! else 0). - Vladimir Kruchinin, Sep 07 2010

a(n) ~ n^(2*n/3)*exp(n^(1/3)-2*n/3)/sqrt(3) * (1 - 1/(6*n^(1/3)) + 25/(72*n^(2/3))). - Vaclav Kotesovec, Jul 28 2013

MATHEMATICA

a[n_] := HypergeometricPFQ[{(1-n)/3, (2-n)/3, -n/3}, {}, -9]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Nov 03 2011 *)

With[{nn=30}, CoefficientList[Series[Exp[x+1/3 x^3], {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Aug 12 2016 *)

PROG

(Maxima) a(n):=n!*sum(if mod(n-k, 2)=0 then binomial(k, (3*k-n)/2)*(1/3)^((n-k)/2)/k! else 0, k, floor(n/3), n); /* Vladimir Kruchinin, Sep 07 2010 */

CROSSREFS

Cf. A000085, A001472.

Column k=3 of A008307.

Sequence in context: A062811 A236856 A318843 * A118932 A053499 A218003

Adjacent sequences:  A001467 A001468 A001469 * A001471 A001472 A001473

KEYWORD

easy,nonn,nice

AUTHOR

N. J. A. Sloane, J. H. Conway and Simon Plouffe

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 11:25 EDT 2018. Contains 316224 sequences. (Running on oeis4.)