|
|
A001470
|
|
Number of degree-n permutations of order dividing 3.
(Formerly M2782 N1118)
|
|
50
|
|
|
1, 1, 1, 3, 9, 21, 81, 351, 1233, 5769, 31041, 142011, 776601, 4874013, 27027729, 168369111, 1191911841, 7678566801, 53474964993, 418199988339, 3044269834281, 23364756531621, 199008751634001, 1605461415071823
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
REFERENCES
|
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{j=0..floor(n/3)} n!/(j!*(n-3j)!*(3^j)) (the latter formula from Roger Cuculière).
E.g.f.: exp(x+1/3*x^3).
D-finite with recurrence: a(n) = a(n-1)+(n-1)*(n-2)*a(n-3). - Geoffrey Critzer, Feb 03 2009
a(n) = n!*Sum_{k=floor(n/3), n} (if mod(n-k,2)=0 then binomial(k,(3*k-n)/2)*(1/3)^((n-k)/2)/k! else 0). - Vladimir Kruchinin, Sep 07 2010
a(n) ~ n^(2*n/3)*exp(n^(1/3)-2*n/3)/sqrt(3) * (1 - 1/(6*n^(1/3)) + 25/(72*n^(2/3))). - Vaclav Kotesovec, Jul 28 2013
|
|
MATHEMATICA
|
a[n_] := HypergeometricPFQ[{(1-n)/3, (2-n)/3, -n/3}, {}, -9]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Nov 03 2011 *)
With[{nn=30}, CoefficientList[Series[Exp[x+1/3 x^3], {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Aug 12 2016 *)
|
|
PROG
|
(Maxima) a(n):=n!*sum(if mod(n-k, 2)=0 then binomial(k, (3*k-n)/2)*(1/3)^((n-k)/2)/k! else 0, k, floor(n/3), n); /* Vladimir Kruchinin, Sep 07 2010 */
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn,nice
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|