

A001468


There are a(n) 2's between successive 1's.
(Formerly M0099 N0036)


21



1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

The Fibonacci word on the alphabet {2,1}, with an extra 1 in front.  Michel Dekking, Nov 26 2018
Start with 1, apply 1>12, 2>122, take limit.  Philippe Deléham, Sep 23 2005
Also number of occurrences of n in Hofstadter Gsequence (A005206) and in A019446.  Reinhard Zumkeller, Feb 02 2012, Aug 07 2011
A blockfractal sequence: every block occurs infinitely many times. Also a reverse blockfractal sequence. See A280511.  Clark Kimberling, Jan 06 2017


REFERENCES

D. Gault and M. Clint, "Curiouser and curiouser" said Alice. Further reflections on an interesting recursive function, Internat. J. Computer Math., 26 (1988), 3543. See Table 2.
D. R. Hofstadter, personal communication, Jul 15 1977.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
M. Bunder and K. Tognetti, On the self matching properties of [j tau], Discrete Math., 241 (2001), 139151.
D. Gault and M. Clint, "Curiouser and curiouser" said Alice. Further reflections on an interesting recursive function, Internat. J. Computer Math., 26 (1988), 3543.
D. Gault & M. Clint, "Curiouser and curiouser said Alice. Further reflections on an interesting recursive function, Intern. J. Computer. Math., 26 (1988), 3543. (Annotated scanned copy)
D. R. Hofstadter, EtaLore [Cached copy, with permission]
D. R. Hofstadter, PiMu Sequences [Cached copy, with permission]
D. R. Hofstadter and N. J. A. Sloane, Correspondence, 1977 and 1991 [See DRH latter, p. 2, Eq. (2), the sequence marked A006336, which is now A001468].
J. V. Pennington and T. F. Mulcrone, Problem E1226, Amer. Math. Monthly, 64 (1957), 197198.
Leon Recht, Martin Rosenbaum and E. P. Starke, Problem 4247, Amer. Math. Monthly, 55 (1948), 588592.
N. J. A. Sloane, Handwritten notes on SelfGenerating Sequences, 1970 (note that A1148 has now become A005282)


FORMULA

a(n) = [(n+1) tau]  [n tau], tau = (1 + sqrt 5)/2 = A001622, [] = floor function.
a(n) = A000201(n+1)  A000201(n) = A022342(n+1)  A022342(n), n >= 1; i.e., the first term discarded, this yields the first differences of A000201 and A022342.  M. F. Hasler, Oct 13 2017


MAPLE

Digits := 100: t := evalf( (1+sqrt(5))/2); A001468 := n> floor((n+1)*t)floor(n*t);


MATHEMATICA

Table[Floor[GoldenRatio*(n + 1)]  Floor[GoldenRatio*n], {n, 0, 80}] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 14 2006 *)
Nest[ Flatten[# /. {1 > {1, 2}, 2 > {1, 2, 2}}] &, {1}, 6] (* Robert G. Wilson v, May 20 2014 and corrected Apr 24 2017 following Clark Kimberling's email of Mar 22 2017 *)


PROG

(Haskell)
import Data.List (group)
a001468 n = a001468_list !! n
a001468_list = map length $ group a005206_list
 Reinhard Zumkeller, Aug 07 2011
(PARI) a=[1]; for(i=1, 30, a=concat([a, vector(a[i], j, 2), 1])); a \\ Or compute as A001468(n)=A201(n+1)A201(n) with A201(n)=(n+sqrtint(5*n^2))\2, working for n>=0 although A000201 is defined for n>=1.  M. F. Hasler, Oct 13 2017


CROSSREFS

Same as A014675 if initial 1 is deleted. Cf. A003849, A000201, A280511.
Sequence in context: A080634 A109925 A180227 * A014675 A107362 A166332
Adjacent sequences: A001465 A001466 A001467 * A001469 A001470 A001471


KEYWORD

nonn,easy,nice


AUTHOR

N. J. A. Sloane


EXTENSIONS

Rechecked by N. J. A. Sloane, Nov 07 2001


STATUS

approved



