login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004641 Fixed under 0 -> 10, 1 -> 100. 21
1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Partial sums: A088462. - Reinhard Zumkeller, Dec 05 2009

Write w(n) = a(n) for n >= 1. Each w(n) is generated by w(i) for exactly one i <= n; let g(n) = i. Each w(i) generates a single 1, in a word (10 or 100) that starts with 1. Therefore, g(n) is the number of 1s among w(1), ..., w(n), so that g = A088462. That is, this sequence is generated by its partial sums. - Clark Kimberling, May 25 2011

LINKS

T. D. Noe, Table of n, a(n) for n = 1..8119

Wieb Bosma, Michel Dekking, Wolfgang Steiner, A remarkable sequence related to Pi and sqrt(2), arXiv:1710.01498 [math.NT], 2017.

Wieb Bosma, Michel Dekking, Wolfgang Steiner, A remarkable sequence related to Pi and sqrt(2), Integers, Electronic Journal of Combinatorial Number Theory 18A (2018), #A4.

N. G. de Bruijn, Sequences of zeros and ones generated by special production rules, Nederl. Akad. Wetensch. Indag. Math. 43 (1981), no. 1, 27-37. Reprinted in Physics of Quasicrystals, ed. P. J. Steinhardt et al., p. 664.

C. J. Glasby, S. P. Glasby, F. Pleijel, Worms by number, Proc. Roy. Soc. B, Proc. Biol. Sci. 275 (1647) (2008) 2071-2076.

N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)

Index entries for characteristic functions

FORMULA

a(n) = floor(n*(sqrt(2) - 1) + sqrt(1/2)) - floor((n - 1)*(sqrt(2) - 1) + sqrt(1/2)) (from the de Bruijn reference). - Peter J. Taylor, Mar 26 2015

From Jianing Song, Jan 02 2019: (Start)

a(n) = A001030(n) - 1.

a(n) = A006337(n-9) - 1 = A159684(n-10) for n >= 10. (End)

MAPLE

P(0):= (1, 0): P(1):= (1, 0, 0):

((P~)@@6)([1]);

# in Maple 12 or earlier, comment the above line and uncomment the following:

# (curry(map, P)@@6)([1]); # Robert Israel, Mar 26 2015

MATHEMATICA

Nest[ Flatten[# /. {0 -> {1, 0}, 1 -> {1, 0, 0}}] &, {1}, 5] (* Robert G. Wilson v, May 25 2011 *)

PROG

(MAGMA) [Floor(n*(Sqrt(2) - 1) + Sqrt(1/2)) - Floor((n - 1)*(Sqrt(2) - 1) + Sqrt(1/2)): n in [0..100]]; // Vincenzo Librandi, Mar 27 2015

CROSSREFS

Equals A001030 - 1. Essentially the same as A006337 - 1 and A159684.

Characteristic function of A086377.

Cf. A081477.

The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Sequence in context: A189298 A288375 A121559 * A266441 A266672 A266070

Adjacent sequences:  A004638 A004639 A004640 * A004642 A004643 A004644

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 27 02:39 EDT 2021. Contains 346302 sequences. (Running on oeis4.)