The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A004641 Fixed under 0 -> 10, 1 -> 100. 22
 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Partial sums: A088462. - Reinhard Zumkeller, Dec 05 2009 Write w(n) = a(n) for n >= 1. Each w(n) is generated by w(i) for exactly one i <= n; let g(n) = i. Each w(i) generates a single 1, in a word (10 or 100) that starts with 1. Therefore, g(n) is the number of 1s among w(1), ..., w(n), so that g = A088462. That is, this sequence is generated by its partial sums. - Clark Kimberling, May 25 2011 LINKS T. D. Noe, Table of n, a(n) for n = 1..8119 Wieb Bosma, Michel Dekking, and Wolfgang Steiner, A remarkable sequence related to Pi and sqrt(2), arXiv:1710.01498 [math.NT], 2017. Wieb Bosma, Michel Dekking, and Wolfgang Steiner, A remarkable sequence related to Pi and sqrt(2), Integers, Electronic Journal of Combinatorial Number Theory 18A (2018), #A4. N. G. de Bruijn, Sequences of zeros and ones generated by special production rules, Nederl. Akad. Wetensch. Indag. Math. 43 (1981), no. 1, 27-37. Reprinted in Physics of Quasicrystals, ed. P. J. Steinhardt et al., p. 664. C. J. Glasby, S. P. Glasby, and F. Pleijel, Worms by number, Proc. Roy. Soc. B, Proc. Biol. Sci. 275 (1647) (2008) 2071-2076. N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence). Index entries for characteristic functions FORMULA a(n) = floor(n*(sqrt(2) - 1) + sqrt(1/2)) - floor((n - 1)*(sqrt(2) - 1) + sqrt(1/2)) (from the de Bruijn reference). - Peter J. Taylor, Mar 26 2015 From Jianing Song, Jan 02 2019: (Start) a(n) = A001030(n) - 1. a(n) = A006337(n-9) - 1 = A159684(n-10) for n >= 10. (End) MAPLE P(0):= (1, 0): P(1):= (1, 0, 0): ((P~)@@6)([1]); # in Maple 12 or earlier, comment the above line and uncomment the following: # (curry(map, P)@@6)([1]); # Robert Israel, Mar 26 2015 MATHEMATICA Nest[ Flatten[# /. {0 -> {1, 0}, 1 -> {1, 0, 0}}] &, {1}, 5] (* Robert G. Wilson v, May 25 2011 *) SubstitutionSystem[{0->{1, 0}, 1->{1, 0, 0}}, {1}, 5]//Flatten (* Harvey P. Dale, Nov 20 2021 *) PROG (Magma) [Floor(n*(Sqrt(2) - 1) + Sqrt(1/2)) - Floor((n - 1)*(Sqrt(2) - 1) + Sqrt(1/2)): n in [0..100]]; // Vincenzo Librandi, Mar 27 2015 (Python) from math import isqrt def A004641(n): return [1, 0, 0, 1, 0, 1, 0, 1][n-1] if n < 9 else -1-isqrt(m:=(n-9)*(n-9)<<1)+isqrt(m+(n-9<<2)+2) # Chai Wah Wu, Aug 25 2022 CROSSREFS Equals A001030 - 1. Essentially the same as A006337 - 1 and A159684. Characteristic function of A086377. Cf. A081477. The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021 Sequence in context: A189298 A288375 A121559 * A266441 A266672 A266070 Adjacent sequences: A004638 A004639 A004640 * A004642 A004643 A004644 KEYWORD nonn,nice,easy AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 12:15 EDT 2023. Contains 365501 sequences. (Running on oeis4.)