login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004642 Powers of 2 written in base 3. 19
1, 2, 11, 22, 121, 1012, 2101, 11202, 100111, 200222, 1101221, 2210212, 12121201, 102020102, 211110211, 1122221122, 10022220021, 20122210112, 111022121001, 222122012002, 1222021101011, 10221112202022, 21220002111121, 120210012000012, 1011120101000101, 2100010202000202 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

When n is odd, a(n) ends in 1, and when n is even, a(n) ends in 2, since 2^n is congruent to 1 mod 3 when n is odd and to 2 mod 3 when n is even. - Alonso del Arte Dec 11 2009

Sloane (1973) conjectured a(n) always has a 0 between the most and least significant digits if n > 15 (see A102483 and A346497).

Erdős (1978) conjectured that for n > 8 a(n) has at least one 2 (see link to Terry Tao's blog). - Dmitry Kamenetsky, Jan 10 2017

REFERENCES

Sloane, N. J. A. "The Persistence of a Number." J. Recr. Math. 6 (1973): 97 - 98

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Paul Erdős, Some unconventional problems in number theory, Mathematics Magazine, Vol. 52, No. 2 (1979), pp. 67-70.

Jeffrey C. Lagarias, Ternary Expansions of Powers of 2, arXiv:math/0512006 [math.DS], 2005-2008.

Terry Tao, The Collatz Conjecture, 2011.

Eric Weisstein's World of Mathematics, Ternary

MATHEMATICA

Table[FromDigits[IntegerDigits[2^n, 3]], {n, 25}] (* Alonso del Arte Dec 11 2009 *)

PROG

(PARI) a(n)=fromdigits(digits(2^n, 3)) \\ M. F. Hasler, Jun 23 2018

(Magma) [Seqint(Intseq(2^n, 3)): n in [0..30]]; // G. C. Greubel, Sep 10 2018

CROSSREFS

Cf. A000079, Powers of 2 written in base 10.

Cf. A004643, ..., A004655: powers of 2 written in base 4, 5, ..., 16

Cf. A004656, A004658, A004659, ...: powers of 3 written in base 2, 4, 5, ...

Sequence in context: A263720 A235609 A018351 * A346497 A185545 A001032

Adjacent sequences:  A004639 A004640 A004641 * A004643 A004644 A004645

KEYWORD

nonn,base,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 29 10:17 EDT 2022. Contains 354913 sequences. (Running on oeis4.)