|
|
A004642
|
|
Powers of 2 written in base 3.
|
|
22
|
|
|
1, 2, 11, 22, 121, 1012, 2101, 11202, 100111, 200222, 1101221, 2210212, 12121201, 102020102, 211110211, 1122221122, 10022220021, 20122210112, 111022121001, 222122012002, 1222021101011, 10221112202022, 21220002111121, 120210012000012, 1011120101000101, 2100010202000202
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
When n is odd, a(n) ends in 1, and when n is even, a(n) ends in 2, since 2^n is congruent to 1 mod 3 when n is odd and to 2 mod 3 when n is even. - Alonso del Arte Dec 11 2009
Sloane (1973) conjectured a(n) always has a 0 between the most and least significant digits if n > 15 (see A102483 and A346497).
Erdős (1978) conjectured that for n > 8 a(n) has at least one 2 (see link to Terry Tao's blog). - Dmitry Kamenetsky, Jan 10 2017
|
|
REFERENCES
|
N. J. A. Sloane, The Persistence of a Number, J. Recr. Math. 6 (1973), 97-98.
|
|
LINKS
|
Eric Weisstein's World of Mathematics, Ternary.
|
|
MATHEMATICA
|
Table[FromDigits[IntegerDigits[2^n, 3]], {n, 25}] (* Alonso del Arte Dec 11 2009 *)
|
|
PROG
|
(PARI) a(n)=fromdigits(digits(2^n, 3)) \\ M. F. Hasler, Jun 23 2018
(Magma) [Seqint(Intseq(2^n, 3)): n in [0..30]]; // G. C. Greubel, Sep 10 2018
|
|
CROSSREFS
|
Cf. A000079: powers of 2 written in base 10.
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|