Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #61 Jan 17 2024 13:20:43
%S 1,2,11,22,121,1012,2101,11202,100111,200222,1101221,2210212,12121201,
%T 102020102,211110211,1122221122,10022220021,20122210112,111022121001,
%U 222122012002,1222021101011,10221112202022,21220002111121,120210012000012,1011120101000101,2100010202000202
%N Powers of 2 written in base 3.
%C When n is odd, a(n) ends in 1, and when n is even, a(n) ends in 2, since 2^n is congruent to 1 mod 3 when n is odd and to 2 mod 3 when n is even. - _Alonso del Arte_ Dec 11 2009
%C Sloane (1973) conjectured a(n) always has a 0 between the most and least significant digits if n > 15 (see A102483 and A346497).
%C Erdős (1978) conjectured that for n > 8 a(n) has at least one 2 (see link to Terry Tao's blog). - _Dmitry Kamenetsky_, Jan 10 2017
%D N. J. A. Sloane, The Persistence of a Number, J. Recr. Math. 6 (1973), 97-98.
%H Vincenzo Librandi, <a href="/A004642/b004642.txt">Table of n, a(n) for n = 0..1000</a>
%H Yagub N. Aliyev, <a href="https://doi.org/10.7546/nntdm.2023.29.3.474-485">Digits of powers of 2 in ternary numeral system</a>, Notes on Number Theory and Discrete Mathematics, Vol. 29, No. 3 (2023), 474-485.
%H Paul Erdős, <a href="https://www.jstor.org/stable/2689842">Some unconventional problems in number theory</a>, Mathematics Magazine, Vol. 52, No. 2 (1979), pp. 67-70.
%H Donald L. Kreher and Douglas R. Stinson, <a href="https://arxiv.org/abs/2401.07351">On min-base palindromic representations of powers of 2</a>, arXiv:2401.07351 [math.NT], 2024. See Table 4 p. 10.
%H Jeffrey C. Lagarias, <a href="https://doi.org/10.1112/jlms/jdn080">Ternary Expansions of Powers of 2</a>, Journal of the London Mathematical Society, Vol. 79, No. 3 (2009), pp. 562-588; <a href="https://arxiv.org/abs/math/0512006">arXiv preprint</a>, arXiv:math/0512006 [math.DS], 2005-2008.
%H Terry Tao, <a href="https://terrytao.wordpress.com/2011/08/25/the-collatz-conjecture-littlewood-offord-theory-and-powers-of-2-and-3/">The Collatz Conjecture, Littlewood-Offord theory, and powers of 2 and 3</a>, 2011.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Ternary.html">Ternary</a>.
%t Table[FromDigits[IntegerDigits[2^n, 3]], {n, 25}] (* _Alonso del Arte_ Dec 11 2009 *)
%o (PARI) a(n)=fromdigits(digits(2^n,3)) \\ _M. F. Hasler_, Jun 23 2018
%o (Magma) [Seqint(Intseq(2^n, 3)): n in [0..30]]; // _G. C. Greubel_, Sep 10 2018
%Y Cf. A000079: powers of 2 written in base 10.
%Y Cf. A004643, ..., A004655: powers of 2 written in base 4, 5, ..., 16.
%Y Cf. A004656, A004658, A004659, ..., A004663: powers of 3 written in base 2, 4, 5, ..., 9.
%K nonn,base,easy
%O 0,2
%A _N. J. A. Sloane_