login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008307
Table T(n,k) giving number of permutations of [1..n] with order dividing k, read by antidiagonals.
18
1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 10, 3, 2, 1, 1, 26, 9, 4, 1, 1, 1, 76, 21, 16, 1, 2, 1, 1, 232, 81, 56, 1, 6, 1, 1, 1, 764, 351, 256, 25, 18, 1, 2, 1, 1, 2620, 1233, 1072, 145, 66, 1, 4, 1, 1, 1, 9496, 5769, 6224, 505, 396, 1, 16, 3, 2, 1, 1, 35696, 31041, 33616, 1345, 2052, 1, 56, 9, 4, 1, 1
OFFSET
1,5
COMMENTS
Solutions to x^k = 1 in Symm_n (the symmetric group of degree n).
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 257.
J. D. Dixon, B. Mortimer, Permutation Groups, Springer (1996), Exercise 1.2.13.
LINKS
M. B. Kutler, C. R. Vinroot, On q-Analogs of Recursions for the Number of Involutions and Prime Order Elements in Symmetric Groups, JIS 13 (2010) #10.3.6, eq (5) for primes k.
FORMULA
T(n+1,k) = Sum_{d|k} (n)_(d-1)*T(n-d+1,k), where (n)_i = n!/(n - i)! = n*(n - 1)*(n - 2)*...*(n - i + 1) is the falling factorial.
E.g.f. for n-th row: Sum_{n>=0} T(n,k)*t^n/n! = exp(Sum_{d|k} t^d/d).
EXAMPLE
Array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 1, 2, 1, 2, 1, 2, ...
1, 4, 3, 4, 1, 6, 1, 4, ...
1, 10, 9, 16, 1, 18, 1, 16, ...
1, 26, 21, 56, 25, 66, 1, 56, ...
1, 76, 81, 256, 145, 396, 1, 256, ...
1, 232, 351, 1072, 505, 2052, 721, 1072, ...
1, 764, 1233, 6224, 1345, 12636, 5761, 11264, ...
MAPLE
A:= proc(n, k) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*A(n-j, k), j=numtheory[divisors](k))))
end:
seq(seq(A(1+d-k, k), k=1..d), d=1..12); # Alois P. Heinz, Feb 14 2013
# alternative
A008307 := proc(n, m)
local x, d ;
add(x^d/d, d=numtheory[divisors](m)) ;
exp(%) ;
coeftayl(%, x=0, n) ;
%*n! ;
end proc:
seq(seq(A008307(1+d-k, k), k=1..d), d=1..12) ; # R. J. Mathar, Apr 30 2017
MATHEMATICA
t[n_ /; n >= 0, k_ /; k >= 0] := t[n, k] = Sum[(n!/(n - d + 1)!)*t[n - d, k], {d, Divisors[k]}]; t[_, _] = 1; Flatten[ Table[ t[n - k, k], {n, 0, 12}, {k, 1, n}]] (* Jean-François Alcover, Dec 12 2011, after given formula *)
CROSSREFS
Rows give A000034, A284517, A284518.
Main diagonal gives A074759. - Alois P. Heinz, Feb 14 2013
Sequence in context: A294587 A064645 A285425 * A249694 A192005 A333810
KEYWORD
nonn,tabl,easy,look,nice
EXTENSIONS
More terms from Vladeta Jovovic, Apr 13 2001
STATUS
approved