Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #48 Dec 16 2021 22:19:48
%S 1,1,1,1,2,1,1,4,1,1,1,10,3,2,1,1,26,9,4,1,1,1,76,21,16,1,2,1,1,232,
%T 81,56,1,6,1,1,1,764,351,256,25,18,1,2,1,1,2620,1233,1072,145,66,1,4,
%U 1,1,1,9496,5769,6224,505,396,1,16,3,2,1,1,35696,31041,33616,1345,2052,1,56,9,4,1,1
%N Table T(n,k) giving number of permutations of [1..n] with order dividing k, read by antidiagonals.
%C Solutions to x^k = 1 in Symm_n (the symmetric group of degree n).
%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 257.
%D J. D. Dixon, B. Mortimer, Permutation Groups, Springer (1996), Exercise 1.2.13.
%H Alois P. Heinz, <a href="/A008307/b008307.txt">Antidiagonals n = 1..141, flattened</a>
%H M. B. Kutler, C. R. Vinroot, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Vinroot/vinroot3.html">On q-Analogs of Recursions for the Number of Involutions and Prime Order Elements in Symmetric Groups</a>, JIS 13 (2010) #10.3.6, eq (5) for primes k.
%F T(n+1,k) = Sum_{d|k} (n)_(d-1)*T(n-d+1,k), where (n)_i = n!/(n - i)! = n*(n - 1)*(n - 2)*...*(n - i + 1) is the falling factorial.
%F E.g.f. for n-th row: Sum_{n>=0} T(n,k)*t^n/n! = exp(Sum_{d|k} t^d/d).
%e Array begins:
%e 1, 1, 1, 1, 1, 1, 1, 1, ...
%e 1, 2, 1, 2, 1, 2, 1, 2, ...
%e 1, 4, 3, 4, 1, 6, 1, 4, ...
%e 1, 10, 9, 16, 1, 18, 1, 16, ...
%e 1, 26, 21, 56, 25, 66, 1, 56, ...
%e 1, 76, 81, 256, 145, 396, 1, 256, ...
%e 1, 232, 351, 1072, 505, 2052, 721, 1072, ...
%e 1, 764, 1233, 6224, 1345, 12636, 5761, 11264, ...
%p A:= proc(n,k) option remember; `if`(n<0, 0, `if`(n=0, 1,
%p add(mul(n-i, i=1..j-1)*A(n-j,k), j=numtheory[divisors](k))))
%p end:
%p seq(seq(A(1+d-k, k), k=1..d), d=1..12); # _Alois P. Heinz_, Feb 14 2013
%p # alternative
%p A008307 := proc(n,m)
%p local x,d ;
%p add(x^d/d, d=numtheory[divisors](m)) ;
%p exp(%) ;
%p coeftayl(%,x=0,n) ;
%p %*n! ;
%p end proc:
%p seq(seq(A008307(1+d-k,k),k=1..d),d=1..12) ; # _R. J. Mathar_, Apr 30 2017
%t t[n_ /; n >= 0, k_ /; k >= 0] := t[n, k] = Sum[(n!/(n - d + 1)!)*t[n - d, k], {d, Divisors[k]}]; t[_, _] = 1; Flatten[ Table[ t[n - k, k], {n, 0, 12}, {k, 1, n}]] (* _Jean-François Alcover_, Dec 12 2011, after given formula *)
%Y Rows give A000034, A284517, A284518.
%Y Columns give A000012, A000085, A001470, A001472, A052501, A053496, A053497, A053498, A053499, A053500, A053501, A053502, A053503, A053504, A053505.
%Y Main diagonal gives A074759. - _Alois P. Heinz_, Feb 14 2013
%K nonn,tabl,easy,look,nice
%O 1,5
%A _N. J. A. Sloane_
%E More terms from _Vladeta Jovovic_, Apr 13 2001