OFFSET
0,4
COMMENTS
The row length sequence of this irregular array is A008619(n), n >= 0. Even or odd powers appear in increasing order starting with 1 or x for even or odd row numbers n, respectively. This is the standard triangle A053120 with 0 deleted. - Wolfdieter Lang, Aug 02 2014
Let T* denote the triangle obtained by replacing each number in this triangle by its absolute value. Then T* gives the coefficients for cos(nx) as a polynomial in cos x. - Clark Kimberling, Aug 04 2024
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
E. A. Guilleman, Synthesis of Passive Networks, Wiley, 1957, p. 593.
Yaroslav Zolotaryuk, J. Chris Eilbeck, "Analytical approach to the Davydov-Scott theory with on-site potential", Physical Review B 63, p543402, Jan. 2001. The authors write, "Since the algebra of these is 'hyperbolic', contrary to the usual Chebyshev polynomials defined on the interval 0 <= x <= 1, we call the set of functions (21) the hyperbolic Chebyshev polynomials." (This refers to the triangle T* described in Comments.)
LINKS
R. J. Mathar, Table of n, a(n) for n = 0..2600
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Renato Ferreira Pinto Jr. and Nathaniel Harms, Testing Support Size More Efficiently Than Learning Histograms, arXiv:2410.18915 [cs.DS], 2024. See p. 40.
D. Foata and G.-N. Han, Nombres de Fibonacci et polynomes orthogonaux
C. Lanczos, Applied Analysis (Annotated scans of selected pages)
I. Rivin, Growth in free groups (and other stories), arXiv:math/9911076 [math.CO], 1999.
Eric Weisstein's World of Mathematics, Chebyshev Polynomial of the First Kind.
Wikipedia, Chebyshev polynomials.
FORMULA
a(n,m) = 2^(m-1) * n * (-1)^((n-m)/2) * ((n+m)/2-1)! / (((n-m)/2)! * m!) if n>0. - R. J. Mathar, Apr 20 2007
From Paul Weisenhorn, Oct 02 2019: (Start)
T_n(x) = 2*x*T_(n-1)(x) - T_(n-2)(x), T_0(x) = 1, T_1(x) = x.
T_n(x) = ((x+sqrt(x^2-1))^n + (x-sqrt(x^2-1))^n)/2. (End)
From Peter Bala, Aug 15 2022: (Start)
T(n,x) = [z^n] ( z*x + sqrt(1 + z^2*(x^2 - 1)) )^n.
Sum_{k = 0..2*n} binomial(2*n,k)*T(k,x) = (2^n)*(1 + x)^n*T(n,x).
exp( Sum_{n >= 1} T(n,x)*t^n/n ) = Sum_{n >= 0} P(n,x)*t^n, where P(n,x) denotes the n-th Legendre polynomial. (End)
EXAMPLE
Rows are: (1), (1), (-1,2), (-3,4), (1,-8,8), (5,-20,16) etc., since if c = cos(x): cos(0x) = 1, cos(1x) = 1c; cos(2x) = -1+2c^2; cos(3x) = -3c+4c^3, cos(4x) = 1-8c^2+8c^4, cos(5x) = 5c-20c^3+16c^5, etc.
From Wolfdieter Lang, Aug 02 2014: (Start)
This irregular triangle a(n,k) begins:
n\k 0 1 2 3 4 5 6 7 ...
0: 1
1: 1
2: -1 2
3: -3 4
4: 1 -8 8
5: 5 -20 16
6: -1 18 -48 32
7: -7 56 -112 64
8: 1 -32 160 -256 128
9: 9 -120 432 -576 256
10: -1 50 -400 1120 -1280 512
11: -11 220 -1232 2816 -2816 1024
12: 1 -72 840 -3584 6912 -6144 2048
13: 13 -364 2912 -9984 16640 -13312 4096
14: -1 98 -1568 9408 -26880 39424 -28672 8192
15: -15 560 -6048 28800 -70400 92160 -61440 16384
...
T(4,x) = 1 - 8*x^2 + 8*x^4, T(5,x) = 5*x - 20*x^3 +16*x^5.
(End)
MAPLE
A008310 := proc(n, m) local x ; coeftayl(simplify(ChebyshevT(n, x), 'ChebyshevT'), x=0, m) ; end: i := 0 : for n from 0 to 100 do for m from n mod 2 to n by 2 do printf("%d %d ", i, A008310(n, m)) ; i := i+1 ; od ; od ; # R. J. Mathar, Apr 20 2007
# second Maple program:
b:= proc(n) b(n):= `if`(n<2, 1, expand(2*b(n-1)-x*b(n-2))) end:
T:= n-> (p-> (d-> seq(coeff(p, x, d-i), i=0..d))(degree(p)))(b(n)):
seq(T(n), n=0..15); # Alois P. Heinz, Sep 04 2019
MATHEMATICA
Flatten[{1, Table[CoefficientList[ChebyshevT[n, x], x], {n, 1, 13}]}]//DeleteCases[#, 0, Infinity]& (* or *) Flatten[{1, Table[Table[((-1)^k*2^(n-2 k-1)*n*Binomial[n-k, k])/(n-k), {k, Floor[n/2], 0, -1}], {n, 1, 13}]}] (* Eugeniy Sokol, Sep 04 2019 *)
CROSSREFS
A039991 is a row reversed version, but has zeros which enable the triangle to be seen. Columns/diagonals are A011782, A001792, A001793, A001794, A006974, A006975, A006976 etc.
Row sums are one. Polynomial evaluations include A001075 (x=2), A001541 (x=3), A001091, A001079, A023038, A011943, A001081, A023039, A001085, A077422, A077424, A097308, A097310, A068203.
Cf. A053120.
KEYWORD
sign,tabf,nice,easy
AUTHOR
EXTENSIONS
Additional comments and more terms from Henry Bottomley, Dec 13 2000
STATUS
approved