login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001085 a(n) = 20a(n-1) - a(n-2).
(Formerly M4744 N2030)
10
1, 10, 199, 3970, 79201, 1580050, 31521799, 628855930, 12545596801, 250283080090, 4993116004999, 99612037019890, 1987247624392801, 39645340450836130, 790919561392329799, 15778745887395759850, 314783998186522867201, 6279901217843061584170 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

From Wolfdieter Lang, Nov 08 2002: (Start)

Chebyshev's polynomials T(n,x) evaluated at x=10.

The a(n) give all (unsigned, integer) solutions of Pell equation a(n)^2 - 99*b(n)^2 = +1 with b(n)=A075843(n), n>=0. (End)

a(11+22k)-1 and a(11+22k)+1 are consecutive odd powerful numbers. The first pair is 99612037019890+-1. See A076445. - T. D. Noe, May 04 2006

This sequence gives the values of x in solutions of the Diophantine equation x^2-11*y^2=1. The corresponding y values are in A001084.

Except for the first term, positive values of x (or y) satisfying x^2 - 20xy + y^2 + 99 = 0. - Colin Barker, Feb 18 2014

REFERENCES

Bastida, Julio R. Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163--166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009) - From N. J. A. Sloane, May 30 2012

H. Brocard, Notes élémentaires sur le problème de Peel, Nouvelle Correspondance Mathématique, 4 (1878), 161-169.

"Questions D'Arithmetique", Question 3686, Solution by H.L. Mennessier, Mathesis, 65(4, Supplement) 1956, pp. 1-12.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..200

Tanya Khovanova, Recursive Sequences

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (20,-1)

FORMULA

For all members x of the sequence, 11*x^2 - 11 is a square. Lim. n-> Inf. a(n)/a(n-1) = 10 + 3*Sqrt(11) - Gregory V. Richardson, Oct 13 2002

a(n) = T(n, 10) = (S(n, 20)-S(n-2, 20))/2, with S(n, x) := U(n, x/2) and T(n), resp. U(n, x), are Chebyshev's polynomials of the first, resp. second, kind. See A053120 and A049310. S(-2, x) := -1, S(-1, x) := 0, S(n-1, 20)= A075843(n).

G.f. (1-10*x)/(1-20*x+x^2). - Simon Plouffe in his 1992 dissertation

a(n) = (((10+3*sqrt(11))^n + (10-3*sqrt(11))^n))/2.

a(n) = sqrt(99*A075843(n)^2 + 1), (cf. Richardson comment).

EXAMPLE

G.f. = 1 + 10*x + 199*x^2 + 3970*x^3 + 79201*x^4 + 1580050*x^5 + 31521799*x^6 + ...

MATHEMATICA

LinearRecurrence[{20, -1}, {1, 10}, 20] (* T. D. Noe, Dec 19 2011 *)

a[ n_] := ChebyshevT[ n, 10]; (* Michael Somos, May 27 2014 *)

a[ n_] := ((10 + Sqrt[99])^n + (10 - Sqrt[99])^n) / 2 // Simplify; (* Michael Somos, May 27 2014 *)

a[ n_] := With[{m = Abs @ n}, SeriesCoefficient[ (1 - 10 x) / (1 - 20 x + x^2), {x, 0, m}]]; (* Michael Somos, May 27 2014 *)

PROG

(Sage) [lucas_number2(n, 20, 1)/2 for n in xrange(0, 20)] # Zerinvary Lajos, Jun 27 2008

(PARI) {a(n) = n=abs(n); polsym( 1 - 20*x + x^2, n) [n+1] / 2}; /* Michael Somos, May 27 2014 */

CROSSREFS

Cf. A090728, A001084.

Sequence in context: A097127 A249846 A211419 * A079436 A126431 A202436

Adjacent sequences:  A001082 A001083 A001084 * A001086 A001087 A001088

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 24 07:54 EDT 2017. Contains 283985 sequences.