login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354410
Numbers with as many zeros as the sum of their digits.
1
10, 200, 1001, 1010, 1100, 3000, 10002, 10020, 10200, 12000, 20001, 20010, 20100, 21000, 40000, 100003, 100011, 100030, 100101, 100110, 100300, 101001, 101010, 101100, 103000, 110001, 110010, 110100, 111000, 130000, 200002, 200020, 200200, 202000, 220000
OFFSET
1,1
COMMENTS
As is normal, there are no leading zeros. The places of k zeros and the nonzero digits that are partitions of k are combinatorial.
Numbers k such that A007953(k) = A055641(k). - Felix Fröhlich, May 26 2022
MATHEMATICA
Select[Range[250000], DigitCount[#, 10, 0]==Total[IntegerDigits[#]]&] (* Harvey P. Dale, Jan 12 2023 *)
PROG
(PARI) isok(m) = my(d=digits(m)); vecsum(d) == #select(x->(x==0), d); \\ Michel Marcus, May 26 2022
(PARI) See Links section.
(Python) # after linked PARI by Rémy Sigrist
base, vv, nb = 10, [0], 0
def visit(v, s, z, r):
global base, vv, nb
if v and s==z:
nb += 1
if nb > len(vv): vv.append(len(vv))
vv[nb-1] = v
if s-z-r <= 0 and s-z+(base-1)*r >= 0:
if v: visit(base*v, s, z+1, r-1)
for d in range(1, base): visit(base*v+d, s+d, z, r-1)
def auptod(digits): visit(0, 0, 0, digits); return sorted(set(vv))
print(auptod(6)) # Michael S. Branicky, May 26 2022
CROSSREFS
Subsequence of A011540.
Cf. A007953 (sum of digits), A055641 (number of 0's).
Sequence in context: A001085 A079436 A285021 * A126431 A335649 A202436
KEYWORD
nonn,base
AUTHOR
Tamas Sandor Nagy, May 25 2022
STATUS
approved