login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354408
Triangle read by rows of generalized ménage numbers: T(n,k) is the number of permutations pi in S_n such that pi(i) != i and pi(i) != i+k (mod n) for all i; n, 1 <= k < n.
4
0, 1, 1, 2, 4, 2, 13, 13, 13, 13, 80, 82, 80, 82, 80, 579, 579, 579, 579, 579, 579, 4738, 4740, 4738, 4752, 4738, 4740, 4738, 43387, 43387, 43390, 43387, 43387, 43390, 43387, 43387, 439792, 439794, 439792, 439794, 440192, 439794, 439792, 439794, 439792
OFFSET
2,4
COMMENTS
Conjectures: (Start)
T(n,1) <= T(n,k) for all 1 < k < n.
With the exception of T(6,3) = 80, T(n,k) > T(n,1) whenever gcd(n,k) > 1. (End)
FORMULA
T(n,1) = A000179(n).
T(n,k) = T(n,n-k).
T(n,k) = A341439(k,n).
T(n,k) = A000179(n) if k is coprime to n.
T(n,j) = T(n,k) if gcd(n,j) = gcd(n,k). - Pontus von Brömssen, May 30 2022
Conjecture: T(n,j) < T(n,k) if gcd(n,j) < gcd(n,k) and (n,k) != (6,3). - Pontus von Brömssen, May 31 2022
EXAMPLE
Triangle begins:
n\k| 1 2 3 4 5 6 7 8
-----+------------------------------------------------
2 | 0
3 | 1 1
4 | 2 4 2
5 | 13 13 13 13
6 | 80 82 80 82 80
7 | 579 579 579 579 579 579
8 | 4738 4740 4738 4752 4738 4740 4738
9 | 43387 43387 43390 43387 43387 43390 43387 43387
...
PROG
(Python)
from sympy import Matrix
def A354408(n, k):
return Matrix(n, n, lambda i, j:int(i!=j and i!=(j+k)%n)).per() # Pontus von Brömssen, May 31 2022
(Python)
# This version, based on the formula in A277256, is much faster than the version using permanents, at least for large n.
from sympy import factorial, gcd, sqrt
from sympy.abc import z
def A354408(n, k):
k=gcd(n, k)
F=((1-sqrt(1+4*z))/2)**(2*(n//k))+((1+sqrt(1+4*z))/2)**(2*(n//k))
p=(F**k).series(z, 0, n+1)
return sum((-1)**j*factorial(n-j)*p.coeff(z, j) for j in range(n+1)) # Pontus von Brömssen, Jun 02 2022
CROSSREFS
Cf. A277256, A341439, A354409 (record values in rows).
Cf. A000179 (column 1), A354152 (column 2).
Sequence in context: A006018 A152666 A153801 * A062867 A264027 A113539
KEYWORD
nonn,tabl
AUTHOR
Peter Kagey, May 25 2022
STATUS
approved