login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152666
Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k runs of odd entries (1<=k<=ceiling(n/2)). For example, the permutation 321756498 has 3 runs of odd entries: 3, 175 and 9.
3
1, 2, 4, 2, 12, 12, 36, 72, 12, 144, 432, 144, 576, 2592, 1728, 144, 2880, 17280, 17280, 2880, 14400, 115200, 172800, 57600, 2880, 86400, 864000, 1728000, 864000, 86400, 518400, 6480000, 17280000, 12960000, 2592000, 86400, 3628800, 54432000
OFFSET
1,2
COMMENTS
Sum of entries in row n is n! (=A000142(n)).
Row n contains ceiling(n/2) entries.
T(n,1) = A010551(n+1).
Sum_{k>=1} k*T(n,k) = A052618(n-1).
Mirror image of A134435.
FORMULA
T(2n,k) = (n!)^2*binomial(n+1,k)*binomial(n-1,k-1).
T(2n+1,k) = n!*(n+1)!*binomial(n,k-1)*binomial(n+1,k).
EXAMPLE
T(3,2)=2 because we have 123 and 321.
T(4,2)=12 because we have 1234, 1432, 3214, 3412, 1243, 3241 and their reverses.
Triangle starts:
1;
2;
4,2;
12,12;
36,72,12;
144,432,144;
576,2592,1728,144.
MAPLE
ae := proc (n, k) options operator, arrow: factorial(n)^2*binomial(n+1, k)*binomial(n-1, k-1) end proc: ao := proc (n, k) options operator, arrow: factorial(n)*factorial(n+1)*binomial(n, k-1)*binomial(n+1, k) end proc: T := proc (n, k) if `mod`(n, 2) = 0 then ae((1/2)*n, k) else ao((1/2)*n-1/2, k) end if end proc: for n to 12 do seq(T(n, k), k = 1 .. ceil((1/2)*n)) end do; # yields sequence in triangular form
MATHEMATICA
T[n_?EvenQ, k_] := (n/2)!^2*Binomial[n/2 - 1, k - 1]*Binomial[n/2 + 1, k]; T[n_?OddQ, k_] := ((n - 1)/2 + 1)!*((n - 1)/2)!*Binomial[(n - 1)/2 + 1, k]*Binomial[(n - 1)/2, k - 1]; Table[T[n, k], {n, 1, 12}, {k, 1, Floor[(n + 1)/2]}] // Flatten (* Jean-François Alcover, Nov 13 2016 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Dec 14 2008
STATUS
approved