The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152665 Number of leading even entries in all permutations of {1,2,...,n}. 2
0, 1, 2, 16, 60, 540, 3024, 32256, 241920, 3024000, 28512000, 410572800, 4670265600, 76281004800, 1017080064000, 18598035456000, 284549942476800, 5762136335155200, 99527809425408000, 2211729098342400000, 42575785143091200000, 1030334000462807040000 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} k*A152664(n,k).
a(2n+1) = n(2n+1)!/(n+2);
a(2n) = n(2n)!/(n+1).
D-finite with recurrence 2*(n+3)*a(n) +(-5*n-8)*a(n-1) +(-2*n^3-2*n^2-n-4)*a(n-2) +(n-2)*(3*n^2-3*n+2)*a(n-3) +(n-3)*(n-2)^2*a(n-4)=0. - R. J. Mathar, Jul 26 2022
EXAMPLE
The permutation 4,6,2,1,5,3 begins with three even numbers, so would contribute 3 to a(6).
a(3)=2 because in the permutations 123, 132, 213, 231, 312, 321 we have 0+0+1+1+0+0 = 2 leading odd entries.
a(45) = 16: Here are the permutations of 1234, 24 in all:
1(234) total 6, no. of initial even terms = 0
3(124) ditto
21(34) total 2, no. of initial even terms 1*2 = 2
23(14) ditto
24(13) total 2, no. of initial even terms 2 twice = 4
Subtotal from 2*** is 2+2+4 = 8
Subtotal from 4*** is also 2+2+4 = 8
Total a(4) = 8+8 = 16.
MAPLE
ao := proc (n) options operator, arrow; n*factorial(2*n+1)/(n+2) end proc: ae := proc (n) options operator, arrow; n*factorial(2*n)/(n+1) end proc: a := proc (n) if `mod`(n, 2) = 1 then ao((1/2)*n-1/2) else ae((1/2)*n) end if end proc; seq(a(n), n = 1 .. 20);
MATHEMATICA
a[n_] := If[OddQ[n], (n-1)*n!/(n+3), n*n!/(n+2)];
Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Apr 29 2023 *)
CROSSREFS
Sequence in context: A207688 A208495 A207583 * A183762 A061608 A212899
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 13 2008
EXTENSIONS
Examples expanded by N. J. A. Sloane, Sep 09 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 14:45 EDT 2024. Contains 372698 sequences. (Running on oeis4.)