login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062867
Triangle read by rows: entries give numbers of permutations of [1..n] by absolute barycenter.
5
1, 1, 2, 4, 2, 14, 8, 2, 46, 62, 10, 2, 282, 292, 132, 12, 2, 1394, 2578, 784, 268, 14, 2, 12658, 15472, 9718, 1920, 534, 16, 2, 83122, 171662, 69318, 33230, 4470, 1058, 18, 2, 985730, 1282604, 964544, 276044, 107660, 10100, 2096, 20, 2, 8012962, 17465978, 8199268, 4851200, 1022824, 337988, 22396, 4160, 22, 2
OFFSET
0,3
COMMENTS
The barycenter or signcenter of a permutation is the sum of the signs of the difference between initial and final positions of the objects.
LINKS
FORMULA
T(n,0) = A062868(n) = A062866(n,0), T(n,k) = 2 * A062866(n,k) for k>0. - Alois P. Heinz, Jul 31 2018
EXAMPLE
[1], [2], [4, 2], [14, 8, 2], [46, 62, 10, 2], [282, 292, 132, 12, 2], ...
(1,6,2,3,4,5,7) has difference (0,5,-1,-1,-1,-1,0) and signs (0,1,-1,-1,-1,-1,0) with total -3, absolute value is 3. This is one of 268 such permutations of degree 7.
Triangle T(n,k) begins:
1;
1;
2;
4, 2;
14, 8, 2;
46, 62, 10, 2;
282, 292, 132, 12, 2;
1394, 2578, 784, 268, 14, 2;
12658, 15472, 9718, 1920, 534, 16, 2;
83122, 171662, 69318, 33230, 4470, 1058, 18, 2;
985730, 1282604, 964544, 276044, 107660, 10100, 2096, 20, 2;
MAPLE
b:= proc(s, t) option remember; (n-> `if`(n=0, x^t,
add(b(s minus {j}, t+signum(n-j)), j=s)))(nops(s))
end:
T:= n-> (p-> seq(coeff(p, x, i)*`if`(i=0, 1, 2), i=0..degree(p)))(b({$1..n}, 0)):
seq(T(n), n=0..12); # Alois P. Heinz, Jul 31 2018
MATHEMATICA
b[s_, t_] := b[s, t] = With[{n = Length[s]}, If[n == 0, x^t, Sum[b[s ~Complement~ {j}, t + Sign[n - j]], {j, s}]]];
T[n_] := With[{p = b[Range[n], 0]}, Table[Coefficient[p, x, i]*If[i == 0, 1, 2], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 25 2021, after Alois P. Heinz *)
CROSSREFS
Column k=0 gives A062868.
Row sums give A000142.
Cf. A062866.
Sequence in context: A152666 A153801 A354408 * A264027 A113539 A215055
KEYWORD
nice,nonn,tabf
AUTHOR
Olivier Gérard, Jun 26 2001
EXTENSIONS
More terms from Vladeta Jovovic, Jun 29 2001
STATUS
approved