|
|
A062868
|
|
Number of permutations of degree n with barycenter 0.
|
|
16
|
|
|
1, 1, 2, 4, 14, 46, 282, 1394, 12658, 83122, 985730, 8012962, 116597538, 1127575970, 19410377378, 217492266658, 4320408974978, 55023200887938, 1238467679662722, 17665859065690754, 444247724347355554, 7015393325151055906, 194912434760367113570, 3375509056735963889634
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
The barycenter or signcenter of a permutation is the sum of the signs of the difference between initial and final positions of the objects.
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 0..450 (first 151 terms from Maxwell Jiang)
|
|
FORMULA
|
a(n) = Sum_{k=0..floor(n/2)} binomial(n, n-2*k)*A320337(k). - Maxwell Jiang, Dec 19 2018 (added by editors)
a(n) ~ sqrt(3) * (1 + exp(-2)*(-1)^n) * n^n / exp(n). - Vaclav Kotesovec, Oct 29 2020
|
|
EXAMPLE
|
(4,1,3,5,2) has difference (3,-1,0,1,-3) and signs (1,-1,0,1,-1) with total 0.
|
|
MAPLE
|
b:= proc(s, t) option remember; (n-> `if`(abs(t)>n, 0, `if`(n=0, 1,
add(b(s minus {j}, t+signum(n-j)), j=s))))(nops(s))
end:
a:= n-> b({$1..n}, 0):
seq(a(n), n=0..14); # Alois P. Heinz, Jul 31 2018
|
|
MATHEMATICA
|
E1[n_ /; n >= 0, 0] = 1;
E1[n_, k_] /; k < 0 || k > n = 0;
E1[n_, k_] := E1[n, k] = (n-k) E1[n-1, k-1] + (k+1) E1[n-1, k];
b[n_] := Sum[(-1)^(n-k) E1[n+k, n] Binomial[2n, n-k], {k, 0, n}];
a[n_] := Sum[Binomial[n, n-2k] b[k], {k, 0, n/2}];
a /@ Range[0, 150] (* Jean-François Alcover, Oct 29 2020, after Peter Luschny in A320337 *)
|
|
CROSSREFS
|
Column k=0 of A062866 or of A062867.
Cf. A179567, A196687, A196688, A320337.
Sequence in context: A263741 A263742 A263743 * A054936 A006443 A152103
Adjacent sequences: A062865 A062866 A062867 * A062869 A062870 A062871
|
|
KEYWORD
|
nice,nonn
|
|
AUTHOR
|
Olivier Gérard, Jun 26 2001
|
|
EXTENSIONS
|
One more term from Vladeta Jovovic, Jun 28 2001
a(11)-a(14) from Hugo Pfoertner, Sep 23 2004
a(15)-a(18) from R. H. Hardin, Jul 18 2010
a(19)-a(22) from Kyle G Hess, Jul 30 2018
a(0)=1 prepended by Alois P. Heinz, Jul 30 2018
Terms a(23) and beyond from Maxwell Jiang, Dec 19 2018
|
|
STATUS
|
approved
|
|
|
|