login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320337
a(n) = A271697(2*n, n).
5
1, 1, 7, 161, 7631, 607009, 72605303, 12172272321, 2722634203807, 783282749905601, 281751782666559239, 123890976070562785633, 65380371270827869603439, 40779819387085820255904481, 29677003954344675666092048791, 24921035407468294238607282809729
OFFSET
0,3
COMMENTS
Central coefficients of the triangles A046739 and A271697.
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k)*E(n+k, n)*binomial(2*n,n-k) where E are the Eulerian numbers A173018. - Peter Luschny, Dec 19 2018
a(n) ~ sqrt(3) * 2^(2*n + 1) * n^(2*n) / exp(2*n + 1). - Vaclav Kotesovec, Dec 19 2018
MAPLE
a := n -> add((-1)^(n-k)*combinat:-eulerian1(n+k, n)*binomial(2*n, n-k), k=0..n): seq(a(n), n=0..15); # Peter Luschny, Dec 19 2018
MATHEMATICA
E1[n_ /; n >= 0, 0] = 1; E1[n_, k_] /; k < 0 || k > n = 0; E1[n_, k_] := E1[n, k] = (n - k) E1[n - 1, k - 1] + (k + 1) E1[n - 1, k];
a[n_] := Sum[(-1)^(n - k) E1[n + k, n] Binomial[2 n, n - k], {k, 0, n}];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Dec 30 2018, after Peter Luschny *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Maxwell Jiang, Dec 18 2018 (added without permission by editors)
STATUS
approved