login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046739
Triangle read by rows, related to number of permutations of [n] with 0 successions and k rises.
16
0, 1, 1, 1, 1, 7, 1, 1, 21, 21, 1, 1, 51, 161, 51, 1, 1, 113, 813, 813, 113, 1, 1, 239, 3361, 7631, 3361, 239, 1, 1, 493, 12421, 53833, 53833, 12421, 493, 1, 1, 1003, 42865, 320107, 607009, 320107, 42865, 1003, 1, 1, 2025, 141549, 1704693, 5494017
OFFSET
1,6
COMMENTS
From Emeric Deutsch, May 25 2009: (Start)
T(n,k) is the number of derangements of [n] having k excedances. Example: T(4,2)=7 because we have 3*14*2, 3*4*12, 4*3*12, 2*14*3, 2*4*13, 3*4*21, 4*3*21, each with two excedances (marked). An excedance of a permutation p is a position i such that p(i) > i.
Sum_{k>=1} k*T(n,k) = A000274(n+1). (End)
The triangle 1;1,1;1,7,1;... has general term T(n,k) = Sum_{j=0..n+2} (-1)^(n-j)*C(n+2,j)*A123125(j,k+2) and bivariate g.f. ((1-y)*(y*exp(2*x*y) + exp(x*(y+1))(y^2 - 4*y + 1) + y*exp(2*x)))/(exp(x*y) - y*exp(x))^3. - Paul Barry, May 10 2011
The n-th row is the local h-vector of the barycentric subdivision of a simplex, i.e., the Coxeter complex of type A. See Proposition 2.4 of Stanley's paper below. - Kyle Petersen, Aug 20 2012
T(n,k) is the k-th coefficient of the local h^*-polynomial, or box polynomial, of the s-lecture hall n-simplex with s=(2,3,...,n+1). See Theorem 4.1 of the paper by N. Gustafsson and L. Solus below. - Liam Solus, Aug 23 2018
LINKS
Robert Israel, Table of n, a(n) for n = 1..10012 (rows 0 to 142, flattened)
L. Carlitz, Richard Scoville, and Theresa Vaughan, Enumeration of pairs of permutations and sequences, Bulletin of the American Mathematical Society 80.5 (1974): 881-884. [Annotated scanned copy]
L. Carlitz, N. J. A. Sloane, and C. L. Mallows, Correspondence, 1975
N. Gustafsson and L. Solus. Derangements, Ehrhart theory, and local h-polynomials, arXiv:1807.05246 [math.CO], 2018.
R. Mantaci and F. Rakotondrajao, Exceedingly deranging!, Advances in Appl. Math., 30 (2003), 177-188. [Emeric Deutsch, May 25 2009]
D. P. Roselle, Permutations by number of rises and successions, Proc. Amer. Math. Soc., 19 (1968), 8-16. [Annotated scanned copy]
D. P. Roselle, Permutations by number of rises and successions, Proc. Amer. Math. Soc., 20 (1968), 8-16.
R. P. Stanley, Subdivisions and local h-vectors, J. Amer. Math. Soc., 5 (1992), 805-851.
John D. Wiltshire-Gordon, Alexander Woo, and Magdalena Zajaczkowska, Specht Polytopes and Specht Matroids, arXiv:1701.05277 [math.CO], 2017. [See Conjecture 6.2]
FORMULA
a(n+1, r) = r*a(n, r) + (n+1-r)*a(n, r-1) + n*a(n-1, r-1).
exp(-t)/(1 - exp((x-1)t)/(x-1)) = 1 + x*t^2/2! + (x+x^2)*t^3/3! + (x+7x^2+x^3)*t^4/4! + (x+21x^2+21x^3+x^4)*t^5/5! + ... - Philippe Deléham, Jun 11 2004
E.g.f.: (y-1)/(y*exp(x) - exp(x*y)). - Mamuka Jibladze, Nov 08 2024
EXAMPLE
Triangle starts:
0;
1;
1, 1;
1, 7, 1;
1, 21, 21, 1;
1, 51, 161, 51, 1;
1, 113, 813, 813, 113, 1;
...
From Peter Luschny, Sep 17 2021: (Start)
The triangle shows the coefficients of the following bivariate polynomials:
[1] 0;
[2] x*y;
[3] x^2*y + x*y^2;
[4] x^3*y + 7*x^2*y^2 + x*y^3;
[5] x^4*y + 21*x^3*y^2 + 21*x^2*y^3 + x*y^4;
[6] x^5*y + 51*x^4*y^2 + 161*x^3*y^3 + 51*x^2*y^4 + x*y^5;
[7] x^6*y + 113*x^5*y^2 + 813*x^4*y^3 + 813*x^3*y^4 + 113*x^2*y^5 + x*y^6;
...
These polynomials are the permanents of the n X n matrices with all entries above the main antidiagonal set to 'x' and all entries below the main antidiagonal set to 'y'. The main antidiagonals consist only of zeros. Substituting x <- 1 and y <- -1 generates the Euler secant numbers A122045. (Compare with A081658.)
(End)
MAPLE
G := (1-t)*exp(-t*z)/(1-t*exp((1-t)*z)): Gser := simplify(series(G, z = 0, 15)): for n to 13 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: 0; for n to 11 do seq(coeff(P[n], t, j), j = 1 .. n-1) end do; # yields sequence in triangular form # Emeric Deutsch, May 25 2009
MATHEMATICA
max = 12; f[t_, z_] := (1-t)*(Exp[-t*z]/(1 - t*Exp[(1-t)*z])); se = Series[f[t, z], {t, 0, max}, {z, 0, max}];
coes = Transpose[ #*Range[0, max]! & /@ CoefficientList[se, {t, z}]]; Join[{0}, Flatten[ Table[ coes[[n, k]], {n, 2, max}, {k, 2, n-1}]]] (* Jean-François Alcover, Oct 24 2011, after g.f. *)
E1[n_ /; n >= 0, 0] = 1; (* E1(n, k) are the Eulerian numbers *)
E1[n_, k_] /; k < 0 || k > n = 0;
E1[n_, k_] := E1[n, k] = (n-k) E1[n-1, k-1] + (k+1) E1[n-1, k];
T[n_, k_] := Sum[Binomial[-j-1, -n-1] E1[j, k], {j, 0, n}];
Table[T[n, k], {n, 1, 100}, {k, 1, n-1}] /. {} -> {0} // Flatten (* Jean-François Alcover, Oct 31 2020, after Peter Luschny in A271697 *)
Table[Expand[n!Factor[SeriesCoefficient[(x-y)/(x Exp[y t]-y Exp[x t]), {t, 0, n}]]], {n, 0, 12}]//TableForm (* Mamuka Jibladze, Nov 26 2024 *)
PROG
(PARI) T(n)={my(x='x+O('x^(n+1))); concat([[0]], [Vecrev(p/y) | p<-Vec(-1+serlaplace((y-1)/(y*exp(x)-exp(x*y))))])}
{ my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Nov 13 2024
CROSSREFS
Cf. A046740.
Row sums give A000166.
Diagonals give A070313, A070315.
T(2n,n) gives A320337.
Sequence in context: A119727 A157272 A176200 * A056752 A053714 A168290
KEYWORD
nonn,easy,nice,tabf
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Apr 07 2000
STATUS
approved