OFFSET
0,13
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
Peter Luschny, Extensions of the binomial
FORMULA
T(n,k) = T(n,n-k). - Alois P. Heinz, Oct 29 2020
EXAMPLE
Triangle starts:
1;
0, 0;
0, 1, 0;
0, 1, 1, 0;
0, 1, 7, 1, 0;
0, 1, 21, 21, 1, 0;
0, 1, 51, 161, 51, 1, 0;
0, 1, 113, 813, 813, 113, 1, 0;
...
MAPLE
MATHEMATICA
<<Combinatorica`
Flatten[Table[Sum[Binomial[-j-1, -n-1] Eulerian[j, k], {j, 0, n}], {n, 0, 9}, {k, 0, n}]]
(* Second program (Combinatorica not needed): *)
E1[n_ /; n >= 0, 0] = 1;
E1[n_, k_] /; k < 0 || k > n = 0;
E1[n_, k_] := E1[n, k] = (n-k) E1[n-1, k-1] + (k+1) E1[n-1, k];
T[n_, k_] := Sum[Binomial[-j-1, -n-1] E1[j, k], {j, 0, n}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 29 2020 *)
PROG
(PARI) T(n)={my(x='x+O('x^(n+1)), v=Vec(serlaplace((y-1)/(y*exp(x)-exp(x*y))))); vector(#v, n, Vecrev(v[n], n))}
{ my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Nov 13 2024
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Apr 12 2016
STATUS
approved