login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000274
Number of permutations of length n with 2 consecutive ascending pairs.
(Formerly M3048 N1236)
10
0, 0, 1, 3, 18, 110, 795, 6489, 59332, 600732, 6674805, 80765135, 1057289046, 14890154058, 224497707343, 3607998868005, 61576514013960, 1112225784377144, 21197714949305577, 425131949816628507, 8950146311929021210, 197350726178034917670, 4548464355722328578691
OFFSET
1,4
COMMENTS
From Emeric Deutsch, May 25 2009: (Start)
a(n) = number of excedances in all derangements of [n-1]. Example: a(5)=18 because the derangements of {1,2,3,4} are 4*123, 3*14*2, 3*4*12, 4*3*12, 2*14*3, 2*4*13, 2*3*4*1, 3*4*21, 4*3*21 with the 18 excedances marked. An excedance of a permutation p is a position i such that p(i)>i.
a(n) = Sum(k*A046739(n,k), k>=1).
(End)
Appears to be the inverse binomial transform of A001286 (filling the two leading zeros in there), then shifting one place to the right. - R. J. Mathar, Apr 04 2012
REFERENCES
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 210 (divided by 2).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. Mantaci and F. Rakotondrajao, Exceedingly deranging!, Advances in Appl. Math., 30 (2003), 177-188. [Emeric Deutsch, May 25 2009]
FORMULA
a(n) = (1 + n) a(n - 1) + (3 + n) a(n - 2) + (3 - n) a(n - 3) + (2 - n) a(n - 4).
E.g.f.: x^2/2*exp(-x)/(1-x)^2. - Vladeta Jovovic, Jan 03 2003
a(n) = (n-1)^2/(n-2)*a(n-1)-(-1)^n*(n-1)/2, n>2, a(2)=0. - Vladeta Jovovic, Aug 31 2003
a(n) = (1/2){[n!/e] - [(n-1)!/e]} (conjectured).
a(n) = (n-1)*GAMMA(n,-1)*exp(-1)/2 where GAMMA = incomplete Gamma function. [Mark van Hoeij, Nov 11 2009]
a(n) = A145887(n-1) + A145886(n-1). - Anton Zakharov, Aug 28 2016
MAPLE
a:= n->sum((n-1)!*sum((-1)^k/k!/2, j=1..n-1), k=0..n-1): seq(a(n), n=1..23); # Zerinvary Lajos, May 17 2007
MATHEMATICA
Table[Subfactorial[n]*n/2, {n, 2, 20}] (* Zerinvary Lajos, Jul 09 2009 *)
CROSSREFS
A diagonal in triangle A010027.
Cf. A046739. [Emeric Deutsch, May 25 2009]
Sequence in context: A074571 A114311 A134092 * A207321 A193236 A357203
KEYWORD
easy,nonn
EXTENSIONS
Name clarified and offset changed by N. J. A. Sloane, Apr 12 2014
STATUS
approved