login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000313
Number of permutations of length n with 3 consecutive ascending pairs.
(Formerly M3633 N1477)
10
0, 0, 0, 1, 4, 30, 220, 1855, 17304, 177996, 2002440, 24474285, 323060540, 4581585866, 69487385604, 1122488536715, 19242660629360, 348933579412440, 6673354706262864, 134252194678935321, 2834212998777523380, 62651024183503148470, 1447238658638922729580
OFFSET
1,5
COMMENTS
Temporary remark: there may be some issues with respect to the offset of this sequence in the formula and program sections. - Joerg Arndt, Nov 16 2014
REFERENCES
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Todd Silvestri, Table of n, a(n) for n = 1..450 (first 100 terms from T. D. Noe)
FORMULA
a(n) = (n*(n+1)!/6)*sum((-1)^k/k!, k=0..n).
a(n) = A065087(n+2)/3. - Zerinvary Lajos, May 25 2007
E.g.f.: x^3/3!*exp(-x)/(1-x)^2. - Vladeta Jovovic, Jan 03 2003
a(n) = round( (exp(-1)*(n+1)!+(-1)^n)*n/6 ). - Mark van Hoeij, Oct 25 2011
G.f.: hypergeom([2, 4],[],x/(x+1))/(x+1)^4. - Mark van Hoeij, Nov 07 2011
a(1) = 0, a(n) = (n-2)*(n-1)*(!(n-2))/6 = (n-2)*(n-1)*A000166(n-2)/6, for n >= 2. - Todd Silvestri, Nov 15 2014
a(n) = hypergeom([4-n,2],[],1)*(-1)^n*A000292(n-3). - Peter Luschny, Nov 19 2014
D-finite with recurrence (-n+4)*a(n) +(n-1)*(n-4)*a(n-1) +(n-1)*(n-2)*a(n-2)=0. - R. J. Mathar, Aug 01 2022
MAPLE
series(hypergeom([2, 4], [], x/(x+1))/(x+1)^4, x=0, 30); # Mark van Hoeij, Nov 07 2011
a := n -> simplify(hypergeom([4-n, 2], [], 1))*(-1)^n*(n-1)*(n-2)*(n-3)/6: seq(a(n), n=1..23); # Peter Luschny, Nov 19 2014
MATHEMATICA
Table[(n*(n + 1)!/6)*Sum[(-1)^k/k!, {k, 0, n}], {n, -1, 25}] (* T. D. Noe, Jun 19 2012 *)
a[1]:=0; a[n_Integer/; n>=2]:=(n-2) (n-1) Subfactorial[n-2]/6 (* Todd Silvestri, Nov 15 2014 *)
PROG
(Sage)
a = lambda n: (n-2)*(n-1)*sloane.A000166(n-2)/6 if n>2 else 0
[a(n) for n in range(1, 24)] # Peter Luschny, Nov 19 2014
CROSSREFS
A diagonal in triangle A010027.
Sequence in context: A134093 A007905 A084976 * A082144 A349456 A220727
KEYWORD
nonn,easy
EXTENSIONS
More terms from Vladeta Jovovic, Jan 03 2003
Formula added by Sean A. Irvine, Nov 11 2010
Name clarified and offset changed by N. J. A. Sloane, Apr 12 2014
STATUS
approved