OFFSET
0,3
COMMENTS
a(n) is also the number of permutations of [2n-1] having n-1 isolated fixed points (i.e. adjacent entries are not fixed points). Example: a(2)=3 because we have 132, 213, and 321. - Emeric Deutsch, Apr 18 2009
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..400
FORMULA
a(n) = (n/2)*A000240(n+1). - Zerinvary Lajos, Dec 18 2007, corrected Jul 09 2012
a(n) = n * (n+1) * (a(n-1)/(n-1) + (-1)^n/2) for n > 1 - Seiichi Manyama, Jun 24 2018
E.g.f.: exp(-x)*x^2*(3 - 2*x + x^2)/(2*(1 - x)^3). - Ilya Gutkovskiy, Jun 25 2018
MATHEMATICA
a[n_] := Subfactorial[n]*Binomial[n + 1, 2];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 18 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 10 2001
STATUS
approved