login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065087
a(n) = A000166(n)*binomial(n+1,2).
4
0, 0, 3, 12, 90, 660, 5565, 51912, 533988, 6007320, 73422855, 969181620, 13744757598, 208462156812, 3367465610145, 57727981888080, 1046800738237320, 20020064118788592, 402756584036805963, 8502638996332570140, 187953072550509445410, 4341715975916768188740
OFFSET
0,3
COMMENTS
a(n) is also the number of permutations of [2n-1] having n-1 isolated fixed points (i.e. adjacent entries are not fixed points). Example: a(2)=3 because we have 132, 213, and 321. - Emeric Deutsch, Apr 18 2009
LINKS
FORMULA
a(n) = (n/2)*A000240(n+1). - Zerinvary Lajos, Dec 18 2007, corrected Jul 09 2012
a(n) = n * (n+1) * (a(n-1)/(n-1) + (-1)^n/2) for n > 1 - Seiichi Manyama, Jun 24 2018
E.g.f.: exp(-x)*x^2*(3 - 2*x + x^2)/(2*(1 - x)^3). - Ilya Gutkovskiy, Jun 25 2018
MATHEMATICA
a[n_] := Subfactorial[n]*Binomial[n + 1, 2];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 18 2024 *)
CROSSREFS
Equals 3 * A000313(n+2).
Sequence in context: A361583 A361584 A124191 * A366733 A305870 A342395
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 10 2001
STATUS
approved