Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Aug 18 2024 14:10:42
%S 0,0,3,12,90,660,5565,51912,533988,6007320,73422855,969181620,
%T 13744757598,208462156812,3367465610145,57727981888080,
%U 1046800738237320,20020064118788592,402756584036805963,8502638996332570140,187953072550509445410,4341715975916768188740
%N a(n) = A000166(n)*binomial(n+1,2).
%C a(n) is also the number of permutations of [2n-1] having n-1 isolated fixed points (i.e. adjacent entries are not fixed points). Example: a(2)=3 because we have 132, 213, and 321. - _Emeric Deutsch_, Apr 18 2009
%H Seiichi Manyama, <a href="/A065087/b065087.txt">Table of n, a(n) for n = 0..400</a>
%F a(n) = (n/2)*A000240(n+1). - _Zerinvary Lajos_, Dec 18 2007, corrected Jul 09 2012
%F a(n) = n * (n+1) * (a(n-1)/(n-1) + (-1)^n/2) for n > 1 - _Seiichi Manyama_, Jun 24 2018
%F E.g.f.: exp(-x)*x^2*(3 - 2*x + x^2)/(2*(1 - x)^3). - _Ilya Gutkovskiy_, Jun 25 2018
%t a[n_] := Subfactorial[n]*Binomial[n + 1, 2];
%t Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Aug 18 2024 *)
%Y Equals 3 * A000313(n+2).
%Y Cf. A000166, A000240, A000387, A305730.
%K nonn
%O 0,3
%A _N. J. A. Sloane_, Nov 10 2001