OFFSET
0,2
COMMENTS
For n=2^k, a(n)=4 n^3 because A016727(2^k) = SumOfSquaresRepresentations[3,(2^k)^2] contains only {0,0,2^k}.
This is why a(16) and a(32) are visibly so much smaller than their neighbors when you look at the graph. [Jonathan Vos Post, Apr 22 2011]
EXAMPLE
a(2) = 32 because the volume of the polyhedron formed by all integer points at distance 2 from the origin, {{-2, 0, 0}, {0, -2, 0}, {0, 0, -2}, {0, 0, 2}, {0, 2, 0}, {2, 0, 0}}, is 32/3.
MATHEMATICA
forms[ z:{_Integer, _, _} ] := Union[ Flatten[ Permutations/@(Times[ z, # ]&/@Flatten[ Outer[ List, {1, -1}, {1, -1}, {1, -1} ], 2 ]), 1 ] ]; polyhedra=Flatten[ forms/@SumOfSquaresRepresentations[ 3, # ], 1 ]&/@(Range[ 1, 36 ]^2); HullVolume[ #, ConvexHull3D[ # ] ]&/@polyhedra;
CROSSREFS
KEYWORD
nonn
AUTHOR
Wouter Meeussen, Nov 10 2001
STATUS
approved