login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113329
a(n) = Sum_{k=0..n} 4^k*A111146(n,k).
6
1, 4, 32, 272, 2400, 21792, 203008, 1940224, 19065344, 193410560, 2038078464, 22490167296, 262429339648, 3271314362368, 43955391856640, 640254018879488, 10121874150653952, 173145693892509696, 3186234896556752896
OFFSET
0,2
FORMULA
G.f.: A(x) = 1/(1 - (2/3)*x*Sum_{k>=0} (k+3)!*x^k ).
EXAMPLE
A(x) = (1 + 4*x + 32*x^2 + 272*x^3 + 2400*x^4 + 21792*x^5 +..)
= 1/(1 - 4/3!*x*(3! + 4!*x + 5!*x^2 + 6!*x^3 + 7!*x^4 +..) ).
PROG
(PARI) {a(n)=local(y=4, x=X+X*O(X^n)); polcoeff(1/(1 - y/(y-1)!*x*sum(k=0, n, (y-1+k)!*x^k)), n, X)}
CROSSREFS
Cf. A111146, A113326, A113327 (y=2), A113328 (y=3), A113330 (y=5), A113331 (y=6).
Sequence in context: A009509 A036725 A065089 * A246818 A145710 A264633
KEYWORD
nonn
AUTHOR
STATUS
approved