login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of length n with 3 consecutive ascending pairs.
(Formerly M3633 N1477)
10

%I M3633 N1477 #78 Jul 28 2024 16:39:39

%S 0,0,0,1,4,30,220,1855,17304,177996,2002440,24474285,323060540,

%T 4581585866,69487385604,1122488536715,19242660629360,348933579412440,

%U 6673354706262864,134252194678935321,2834212998777523380,62651024183503148470,1447238658638922729580

%N Number of permutations of length n with 3 consecutive ascending pairs.

%C Temporary remark: there may be some issues with respect to the offset of this sequence in the formula and program sections. - _Joerg Arndt_, Nov 16 2014

%D F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Todd Silvestri, <a href="/A000313/b000313.txt">Table of n, a(n) for n = 1..450</a> (first 100 terms from T. D. Noe)

%F a(n) = (n*(n+1)!/6)*sum((-1)^k/k!, k=0..n).

%F a(n) = A065087(n+2)/3. - _Zerinvary Lajos_, May 25 2007

%F E.g.f.: x^3/3!*exp(-x)/(1-x)^2. - _Vladeta Jovovic_, Jan 03 2003

%F a(n) = round( (exp(-1)*(n+1)!+(-1)^n)*n/6 ). - _Mark van Hoeij_, Oct 25 2011

%F G.f.: hypergeom([2, 4],[],x/(x+1))/(x+1)^4. - _Mark van Hoeij_, Nov 07 2011

%F a(1) = 0, a(n) = (n-2)*(n-1)*(!(n-2))/6 = (n-2)*(n-1)*A000166(n-2)/6, for n >= 2. - _Todd Silvestri_, Nov 15 2014

%F a(n) = hypergeom([4-n,2],[],1)*(-1)^n*A000292(n-3). - _Peter Luschny_, Nov 19 2014

%F D-finite with recurrence (-n+4)*a(n) +(n-1)*(n-4)*a(n-1) +(n-1)*(n-2)*a(n-2)=0. - _R. J. Mathar_, Aug 01 2022

%p series(hypergeom([2,4],[],x/(x+1))/(x+1)^4, x=0, 30); # _Mark van Hoeij_, Nov 07 2011

%p a := n -> simplify(hypergeom([4-n,2],[],1))*(-1)^n*(n-1)*(n-2)*(n-3)/6: seq(a(n), n=1..23); # _Peter Luschny_, Nov 19 2014

%t Table[(n*(n + 1)!/6)*Sum[(-1)^k/k!, {k, 0, n}], {n, -1, 25}] (* _T. D. Noe_, Jun 19 2012 *)

%t a[1]:=0; a[n_Integer/;n>=2]:=(n-2) (n-1) Subfactorial[n-2]/6 (* _Todd Silvestri_, Nov 15 2014 *)

%o (Sage)

%o a = lambda n: (n-2)*(n-1)*sloane.A000166(n-2)/6 if n>2 else 0

%o [a(n) for n in range(1,24)] # _Peter Luschny_, Nov 19 2014

%Y Cf. A010027, A000255, A000166, A000274, A001260, A001261.

%Y A diagonal in triangle A010027.

%K nonn,easy

%O 1,5

%A _N. J. A. Sloane_

%E More terms from _Vladeta Jovovic_, Jan 03 2003

%E Formula added by _Sean A. Irvine_, Nov 11 2010

%E Name clarified and offset changed by _N. J. A. Sloane_, Apr 12 2014