login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000311 Schroeder's fourth problem; also series-reduced rooted trees with n labeled leaves; also number of total partitions of n.
(Formerly M3613 N1465)
105
0, 1, 1, 4, 26, 236, 2752, 39208, 660032, 12818912, 282137824, 6939897856, 188666182784, 5617349020544, 181790703209728, 6353726042486272, 238513970965257728, 9571020586419012608, 408837905660444010496, 18522305410364986906624 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
a(n) is the number of labeled series-reduced rooted trees with n leaves (root has degree 0 or >= 2); a(n-1) = number of labeled series-reduced trees with n leaves. Also number of series-parallel networks with n labeled edges, divided by 2.
A total partition of n is essentially what is meant by the first part of the previous line: take the numbers 12...n, and partition them into at least two blocks. Partition each block with at least 2 elements into at least two blocks. Repeat until only blocks of size 1 remain. (See the reference to Stanley, Vol. 2.) - N. J. A. Sloane, Aug 03 2016
Polynomials with coefficients in triangle A008517, evaluated at 2. - Ralf Stephan, Dec 13 2004
Row sums of unsigned A134685. - Tom Copeland, Oct 11 2008
Row sums of A134991, which contains an e.g.f. for this sequence and its compositional inverse. - Tom Copeland, Jan 24 2018
From Gus Wiseman, Dec 28 2019: (Start)
Also the number of singleton-reduced phylogenetic trees with n labels. A phylogenetic tree is a series-reduced rooted tree whose leaves are (usually disjoint) nonempty sets. It is singleton-reduced if no non-leaf node covers only singleton branches. For example, the a(4) = 26 trees are:
{1,2,3,4} {{1},{2},{3,4}} {{1},{2,3,4}}
{{1},{2,3},{4}} {{1,2},{3,4}}
{{1,2},{3},{4}} {{1,2,3},{4}}
{{1},{2,4},{3}} {{1,2,4},{3}}
{{1,3},{2},{4}} {{1,3},{2,4}}
{{1,4},{2},{3}} {{1,3,4},{2}}
{{1,4},{2,3}}
{{{1},{2,3}},{4}}
{{{1,2},{3}},{4}}
{{1},{{2},{3,4}}}
{{1},{{2,3},{4}}}
{{{1},{2,4}},{3}}
{{{1,2},{4}},{3}}
{{1},{{2,4},{3}}}
{{{1,3},{2}},{4}}
{{{1},{3,4}},{2}}
{{{1,3},{4}},{2}}
{{{1,4},{2}},{3}}
{{{1,4},{3}},{2}}
(End)
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 224.
J. Felsenstein, Inferring phyogenies, Sinauer Associates, 2004; see p. 25ff.
L. R. Foulds and R. W. Robinson, Enumeration of phylogenetic trees without points of degree two. Ars Combin. 17 (1984), A, 169-183. Math. Rev. 85f:05045
T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 197.
E. Schroeder, Vier combinatorische Probleme, Z. f. Math. Phys., 15 (1870), 361-376.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see "total partitions", Example 5.2.5, Equation (5.27), and also Fig. 5-3 on page 14. See also the Notes on page 66.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..375 [Shortened file because terms grow rapidly: see Sloane link below for additional terms]
Mohamed Barakat, Reimer Behrends, Christopher Jefferson, Lukas Kühne, and Martin Leuner, On the generation of rank 3 simple matroids with an application to Terao's freeness conjecture, arXiv:1907.01073 [math.CO], 2019.
Frédérique Bassino, Mathilde Bouvel, Valentin Féray, Lucas Gerin, Mickaël Maazoun, and Adeline Pierrot, Random cographs: Brownian graphon limit and asymptotic degree distribution, arXiv:1907.08517 [math.CO], 2019.
A. Blass, N. Dobrinen, and D. Raghavan, The next best thing to a P-point, arXiv preprint arXiv:1308.3790 [math.LO], 2013.
P. J. Cameron, Some treelike objects, Quart. J. Math. Oxford, 38 (1987), 155-183. MR0891613 (89a:05009). See p. 155 and 159.
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
L. Carlitz and J. Riordan, The number of labeled two-terminal series-parallel networks, Duke Math. J. 23 (1956), 435-445 (the sequence called {A_n}).
Tom Copeland, Comments on A000311
Brian Drake, Ira M. Gessel, and Guoce Xin, Three Proofs and a Generalization of the Goulden-Litsyn-Shevelev Conjecture on a Sequence Arising in Algebraic Geometry, J. of Integer Sequences, Vol. 10 (2007), Article 07.3.7
John Engbers, David Galvin, and Clifford Smyth, Restricted Stirling and Lah numbers and their inverses, arXiv:1610.05803 [math.CO], 2016.
J. Felsenstein, The number of evolutionary trees, Systematic Zoology, 27 (1978), 27-33. (Annotated scanned copy)
J. Felsenstein, The number of evolutionary trees, Systematic Biology, 27 (1978), pp. 27-33, 1978.
S. R. Finch, Series-parallel networks, July 7, 2003. [Cached copy, with permission of the author]
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 129
M. D. Hendy, C. H. C. Little, David Penny, Comparing trees with pendant vertices labelled, SIAM J. Appl. Math. 44 (5) (1984) Table 1
D. Jackson, A. Kempf, and A. Morales, A robust generalization of the Legendre transform for QFT, arXiv:1612.0046 [hep-th], 2017.
V. P. Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. Southern Calif., 2012.
B. R. Jones, On tree hook length formulas, Feynman rules and B-series, Master's thesis, Simon Fraser University, 2014.
Vladimir V. Kruchinin, The method for obtaining expressions for coefficients of reverse generating functions, arXiv:1211.3244 [math.CO], 2012.
Z. A. Lomnicki, Two-terminal series-parallel networks, Adv. Appl. Prob., 4 (1972), 109-150.
Dragan Mašulović, Big Ramsey spectra of countable chains, arXiv:1912.03022 [math.CO], 2019.
Arnau Mir, Francesc Rossello, and Lucia Rotger, Sound Colless-like balance indices for multifurcating trees, arXiv:1805.01329 [q-bio.PE], 2018.
J. W. Moon, Some enumerative results on series-parallel networks, Annals Discrete Math., 33 (1987), 199-226.
T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
F. Murtagh, Counting dendrograms: a survey, Discrete Appl. Math., 7 (1984), 191-199.
P. Regner, Phylogenetic Trees: Selected Combinatorial Problems, Master's Thesis, 2012, Institute of Discrete Mathematics and Geometry, TU Vienna, pp. 50-59.
J. Riordan, The blossoming of Schröder's fourth problem, Acta Math., 137 (1976), 1-16.
E. Schröder, Vier combinatorische Probleme, Z. f. Math. Phys., 15 (1870), 361-376. [Annotated scanned copy]
J. Taylor, Formal group laws and hypergraph colorings, doctoral thesis, Univ. of Wash., 2016, p. 95. [Tom Copeland, Dec 20 2018]
FORMULA
E.g.f. A(x) satisfies exp A(x) = 2*A(x) - x + 1.
a(0)=0, a(1)=a(2)=1; for n >= 2, a(n+1) = (n+2)*a(n) + 2*Sum_{k=2..n-1} binomial(n, k)*a(k)*a(n-k+1).
a(1)=1; for n>1, a(n) = -(n-1) * a(n-1) + Sum_{k=1..n-1} binomial(n, k) * a(k) * a(n-k). - Michael Somos, Jun 04 2012
From the umbral operator L in A135494 acting on x^n comes, umbrally, (a(.) + x)^n = (n * x^(n-1) / 2) - (x^n / 2) + Sum_{j>=1} j^(j-1) * (2^(-j) / j!) * exp(-j/2) * (x + j/2)^n giving a(n) = 2^(-n) * Sum_{j>=1} j^(n-1) * ((j/2) * exp(-1/2))^j / j! for n > 1. - Tom Copeland, Feb 11 2008
Let h(x) = 1/(2-exp(x)), an e.g.f. for A000670, then the n-th term of A000311 is given by ((h(x)*d/dx)^n)x evaluated at x=0, i.e., A(x) = exp(x*a(.)) = exp(x*h(u)*d/du) u evaluated at u=0. Also, dA(x)/dx = h(A(x)). - Tom Copeland, Sep 05 2011 (The autonomous differential eqn. here is also on p. 59 of Jones. - Tom Copeland, Dec 16 2019)
A134991 gives (b.+c.)^n = 0^n, for (b_n)=A000311(n+1) and (c_0)=1, (c_1)=-1, and (c_n)=-2* A000311(n) = -A006351(n) otherwise. E.g., umbrally, (b.+c.)^2 = b_2*c_0 + 2 b_1*c_1 + b_0*c_2 =0. - Tom Copeland, Oct 19 2011
a(n) = Sum_{k=1..n-1} (n+k-1)!*Sum_{j=1..k} (1/(k-j)!)*Sum_{i=0..j} 2^i*(-1)^i*Stirling2(n+j-i-1, j-i)/((n+j-i-1)!*i!), n>1, a(0)=0, a(1)=1. - Vladimir Kruchinin, Jan 28 2012
Using L. Comtet's identity and D. Wasserman's explicit formula for the associated Stirling numbers of second kind (A008299) one gets: a(n) = Sum_{m=1..n-1} Sum_{i=0..m} (-1)^i * binomial(n+m-1,i) * Sum_{j=0..m-i} (-1)^j * ((m-i-j)^(n+m-1-i))/(j! * (m-i-j)!). - Peter Regner, Oct 08 2012
G.f.: x/Q(0), where Q(k) = 1 - k*x - x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 01 2013
G.f.: x*Q(0), where Q(k) = 1 - x*(k+1)/(x*(k+1) - (1-k*x)*(1-x-k*x)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 11 2013
a(n) ~ n^(n-1) / (sqrt(2) * exp(n) * (2*log(2)-1)^(n-1/2)). - Vaclav Kotesovec, Jan 05 2014
E.g.f. A(x) satisfies d/dx A(x) = 1 / (1 + x - 2 * A(x)). - Michael Somos, Oct 25 2014
O.g.f.: Sum_{n>=0} x / Product_{k=0..n} (2 - k*x). - Paul D. Hanna, Oct 27 2014
E.g.f.: (x - 1 - 2 LambertW(-exp((x-1)/2) / 2)) / 2. - Vladimir Reshetnikov, Oct 16 2015 (This e.g.f. is given in A135494, the entry alluded to in my 2008 formula, and in A134991 along with its compositional inverse. - Tom Copeland, Jan 24 2018)
a(0) = 0, a(1) = 1; a(n) = n! * [x^n] exp(Sum_{k=1..n-1} a(k)*x^k/k!). - Ilya Gutkovskiy, Oct 17 2017
a(n+1) = Sum_{k=0..n} A269939(n, k) for n >= 1. - Peter Luschny, Feb 15 2021
EXAMPLE
E.g.f.: A(x) = x + x^2/2! + 4*x^3/3! + 26*x^4/4! + 236*x^5/5! + 2752*x^6/6! + ...
where exp(A(x)) = 1 - x + 2*A(x), and thus
Series_Reversion(A(x)) = x - x^2/2! - x^3/3! - x^4/4! - x^5/5! - x^6/6! + ...
O.g.f.: G(x) = x + x^2 + 4*x^3 + 26*x^4 + 236*x^5 + 2752*x^6 + 39208*x^7 + ...
where
G(x) = x/2 + x/(2*(2-x)) + x/(2*(2-x)*(2-2*x)) + x/(2*(2-x)*(2-2*x)*(2-3*x)) + x/(2*(2-x)*(2-2*x)*(2-3*x)*(2-4*x)) + x/(2*(2-x)*(2-2*x)*(2-3*x)*(2-4*x)*(2-5*x)) + ...
From Gus Wiseman, Dec 28 2019: (Start)
A rooted tree is series-reduced if it has no unary branchings, so every non-leaf node covers at least two other nodes. The a(4) = 26 series-reduced rooted trees with 4 labeled leaves are the following. Each bracket (...) corresponds to a non-leaf node.
(1234) ((12)34) ((123)4)
(1(23)4) (1(234))
(12(34)) ((124)3)
(1(24)3) ((134)2)
((13)24) (((12)3)4)
((14)23) ((1(23))4)
((12)(34))
(1((23)4))
(1(2(34)))
(((12)4)3)
((1(24))3)
(1((24)3))
(((13)2)4)
((13)(24))
(((13)4)2)
((1(34))2)
(((14)2)3)
((14)(23))
(((14)3)2)
(End)
MAPLE
M:=499; a:=array(0..500); a[0]:=0; a[1]:=1; a[2]:=1; for n from 0 to 2 do lprint(n, a[n]); od: for n from 2 to M do a[n+1]:=(n+2)*a[n]+2*add(binomial(n, k)*a[k]*a[n-k+1], k=2..n-1); lprint(n+1, a[n+1]); od:
Order := 50; t1 := solve(series((exp(A)-2*A-1), A)=-x, A); A000311 := n-> n!*coeff(t1, x, n);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(combinat[multinomial](n, n-i*j, i$j)/j!*
a(i)^j*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> `if`(n<2, n, b(n, n-1)):
seq(a(n), n=0..40); # Alois P. Heinz, Jan 28 2016
# faster program:
b:= proc(n, i) option remember;
`if`(i=0 and n=0, 1, `if`(i<=0 or i>n, 0,
i*b(n-1, i) + (n+i-1)*b(n-1, i-1))) end:
a:= n -> `if`(n<2, n, add(b(n-1, i), i=0..n-1)):
seq(a(n), n=0..40); # Peter Luschny, Feb 15 2021
MATHEMATICA
nn = 19; CoefficientList[ InverseSeries[ Series[1+2a-E^a, {a, 0, nn}], x], x]*Range[0, nn]! (* Jean-François Alcover, Jul 21 2011 *)
a[ n_] := If[ n < 1, 0, n! SeriesCoefficient[ InverseSeries[ Series[ 1 + 2 x - Exp[x], {x, 0, n}]], n]]; (* Michael Somos, Jun 04 2012 *)
a[n_] := (If[n < 2, n, (column = ConstantArray[0, n - 1]; column[[1]] = 1; For[j = 3, j <= n, j++, column = column * Flatten[{Range[j - 2], ConstantArray[0, (n - j) + 1]}] + Drop[Prepend[column, 0], -1] * Flatten[{Range[j - 1, 2*j - 3], ConstantArray[0, n - j]}]; ]; Sum[column[[i]], {i, n - 1}] )]); Table[a[n], {n, 0, 20}] (* Peter Regner, Oct 05 2012, after a formula by Felsenstein (1978) *)
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*a[i]^j *b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := If[n<2, n, b[n, n-1]]; Table[ a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 07 2016, after Alois P. Heinz *)
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mtot[m_]:=Prepend[Join@@Table[Tuples[mtot/@p], {p, Select[sps[m], 1<Length[#]<Length[m]&]}], m];
Table[Length[mtot[Range[n]]], {n, 0, 6}] (* Gus Wiseman, Dec 28 2019 *)
(* Lengthy but easy to follow *)
lead[_, n_ /; n < 3] := 0
lead[h_, n_] := Module[{p, i},
p = Position[h, {___}];
Sum[MapAt[{#, n} &, h, p[[i]]], {i, Length[p]}]
]
follow[h_, n_] := Module[{r, i},
r = Replace[Position[h, {___}], {a__} -> {a, -1}, 1];
Sum[Insert[h, n, r[[i]]], {i, Length[r]}]
]
marry[_, n_ /; n < 3] := 0
marry[h_, n_] := Module[{p, i},
p = Position[h, _Integer];
Sum[MapAt[{#, n} &, h, p[[i]]], {i, Length[p]}]
]
extend[a_ + b_, n_] := extend[a, n] + extend[b, n]
extend[a_, n_] := lead[a, n] + follow[a, n] + marry[a, n]
hierarchies[1] := hierarchies[1] = extend[hier[{}], 1]
hierarchies[n_] := hierarchies[n] = extend[hierarchies[n - 1], n] (* Daniel Geisler, Aug 22 2022 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, for( i=1, n, A = Pol(exp(A + x * O(x^i)) - A + x - 1)); n! * polcoeff(A, n))}; /* Michael Somos, Jan 15 2004 */
(PARI) {a(n) = my(A); if( n<0, 0, A = O(x); for( i=1, n, A = intformal( 1 / (1 + x - 2*A))); n! * polcoeff(A, n))}; /* Michael Somos, Oct 25 2014 */
(PARI) {a(n) = n! * polcoeff(serreverse(1+2*x - exp(x +x^2*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Oct 27 2014
(PARI) \p100 \\ set precision
{A=Vec(sum(n=0, 600, 1.*x/prod(k=0, n, 2 - k*x + O(x^31))))}
for(n=0, 25, print1(if(n<1, 0, round(A[n])), ", ")) \\ Paul D. Hanna, Oct 27 2014
(Maxima) a(n):=if n=1 then 1 else sum((n+k-1)!*sum(1/(k-j)!*sum((2^i*(-1)^(i)*stirling2(n+j-i-1, j-i))/((n+j-i-1)!*i!), i, 0, j), j, 1, k), k, 1, n-1); /* Vladimir Kruchinin, Jan 28 2012 */
(Python)
from functools import lru_cache
from math import comb
@lru_cache(maxsize=None)
def A000311(n): return n if n <= 1 else -(n-1)*A000311(n-1)+comb(n, m:=n+1>>1)*(0 if n&1 else A000311(m)**2) + (sum(comb(n, i)*A000311(i)*A000311(n-i) for i in range(1, m))<<1) # Chai Wah Wu, Nov 10 2022
CROSSREFS
Row sums of A064060 and A134991.
The unlabeled version is A000669.
Unlabeled phylogenetic trees are A141268.
The node-counting version is A060356, with unlabeled version A001678.
Phylogenetic trees with n labels are A005804.
Chains of set partitions are A005121, with maximal version A002846.
Inequivalent leaf-colorings of series-reduced rooted trees are A318231.
For n >= 2, A000311(n) = A006351(n)/2 = A005640(n)/2^(n+1).
Cf. A000110, A000669 = unlabeled hierarchies, A119649.
Sequence in context: A000310 A054360 A124824 * A244451 A001863 A300698
KEYWORD
nonn,core,easy,nice
AUTHOR
EXTENSIONS
Name edited by Gus Wiseman, Dec 28 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 19 04:26 EDT 2024. Contains 370952 sequences. (Running on oeis4.)